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Abstract. Applications of atmospheric pressure plasma jets (APPJs) present

challenging feedback control problems due to the complexity of the plasma-substrate

interactions. The plasma treatment of complex substrates is particularly sensitive

to changes in the physical, chemical, and electrical properties of the substrate, which

may vary considerably within and between target substrates. The increasingly popular

reinforcement learning (RL) methods hold promise for learning-based control of APPJ

applications that involve treatment of complex substrates with time-varying or non-

uniform characteristics. This paper demonstrates the use of a deep RL method for

regulation of thermal properties of APPJs on substrates with different thermal and

electrical characteristics. Using simulated data from an experimentally-validated,

physics-based model of the thermal dynamics of the plasma-substrate interactions,

an RL agent is trained to perform temperature setpoint tracking. It is shown that

training the RL agent using a wide range of simulated thermal dynamics of the

plasma-substrate interactions allows for capturing the diverse temperature responses

of different substrates. Experimental demonstrations on a kHz-excited APPJ in He

show that the proposed RL agent enables effective temperature control over a wide

variety of substrates with drastically different thermal and electrical properties.

1. Introduction

Atmospheric pressure plasma jets (APPJs) are unique tools for the treatment of many

different types of substrates for a wide variety of purposes [1]. Due to their ability to

locally generate and deliver thermal, chemical, and electrical effects to substrates [2],

APPJs have found wide use in materials processing for polymerization [3], etching and

surface activation [4], as well as in medicine for the promotion of wound healing, blood

coagulation, disinfection of infected tissue, and tumor shrinking [5, 6, 7, 8]. However,

‡ Both authors contributed equally.
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reliable and effective operation of APPJs can be challenging, particularly over complex

substrates. APPJ treatments generally require precise control of the integral, nonlinear

nature of (possibly multiple) plasma effects on a substrate. However, APPJs exhibit

nonlinear and multivariable dynamics, which are sensitive to exogenous disturbances

(e.g., changes in jet tip-to-substrate separation distance) and run-to-run variabilities

[9, 10, 11, 12, 13, 14]. Recently, advanced model-based control strategies have been

employed to address these challenges [15, 16, 17, 18, 19].

A significant challenge in feedback control of APPJs is variations of the plasma and

substrate dynamics that can result from changes in plasma properties (e.g., due to mode

transitions, run-to-run variabilities) and time-varying or non-uniform characteristics

of complex substrates. For example, the α-γ transition in RF APPJs can lead to

significant variability in the APPJ dynamics [20] and therefore the delivered plasma

effects to a substrate. Variations in properties of a substrate can also drastically affect

the plasma dynamics. For example, plasma tends to spread over dielectric substrates due

to charge accumulation on the surface. On the other hand, the so-called “discharge re-

strike” phenomena observed on conductive substrates can result in a significantly higher

power deposition in the plasma, along with considerable changes in electric fields and

species densities delivered to the substrate [9, 10]. Moreover, complex substrates with

heterogeneous and time-varying characteristics often arise in materials processing and

medical applications. For example, healthy tissue and wounds generally have different

thermal and electrical properties [21]. Skin electrical conductivity can change from

patient to patient, or even from point to point in the same patient. Drying of the skin

during treatment or coagulation of blood during treatment for wound healing can lead to

time-varying dynamics [22, 23]. These characteristics of plasma-substrate interactions

pose significant challenges to even the most advanced process control schemes such as

model predictive control [15, 16].

Learning-based control holds promise for addressing the challenges in feedback

control of APPJs, especially in applications with time-varying dynamics [24]. In this

paper, we focus on deep reinforcement learning (RL), an emerging area of research

in machine learning. In deep RL, an artificial neural network (ANN) is trained to

take optimal actions to maximize a reward (or minimize a penalty) through continuous

feedback during training [25]. RL has found remarkable success in a range of

applications including complex gameplay, robotic control, and autonomous navigation

[26, 27, 28, 29, 30, 31, 32, 33]. The goal of this paper is to present a proof-of-

concept demonstration of deep RL for controlling the thermal dynamics of APPJ-treated

substrates with drastically different electrical and thermal properties. Deep RL agents

are developed and tested on a kHz-excited APPJ in He for controlling the substrate

temperature of glass, aluminum, and polyimide substrates.

A key practice in RL is to use simulated data to train an RL agent such that it

is capable of performing the same task in a real environment, otherwise known as sim-

to-real transfer learning. Training the RL agent based on simulated data has multiple

advantages. Firstly, the RL agent’s exploration during the learning process can raise
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safety concerns if deployed in a live environment (e.g., potential thermal damage to

the substrate). Secondly, deep RL algorithms generally have high sample complexity

(i.e., require a large amount of training data), precluding their training with live data

collection, which may be many orders of magnitude slower to generate than simulated

data. Finally, simulations permit the generation of data under conditions that may be

impractical to probe experimentally. These challenges make the sim-to-real transfer of

RL agents an exciting prospect provided the model on which the agent is trained can

adequately describe the real system dynamics.

Nonetheless, transferring the simulated performance of RL agents to a real-world

environment can be challenging given the “reality gap”, i.e., the mismatch between

system dynamics in the simulated and real-world environments. Building a high-

fidelity model or more complex simulators that can capture every aspect of a real

environment is often prohibitively expensive or may even be impractical. Therefore,

methods that enrich the data sets on which RL agents are trained have been proposed

to address the reality gap [34, 35, 36]. These methods are generally intended to

account for uncertain and difficult-to-model aspects of the real environments to enable

successful sim-to-real transfer of RL agents using limited experimental data. Here, we

use dynamics randomization [37] to allow for training RL agents for controlling the

thermal effects of the APPJ using a relatively simple model of the thermal dynamics

of the plasma-substrate interactions. Dynamics randomization involves randomizing

the model parameters during the training process to account for the mismatch between

the simulated and real environments (i.e., unmodeled dynamics and noise) as well as

the different dynamics the RL agents may encounter during the plasma treatment (i.e.,

different substrates).

In this work, we use data generated from a physics-based model of the substrate

thermal dynamics to train three RL agents based on three different degrees of dynamics

randomization of the model parameters. It is shown that enriching the training

data by using numerous realizations of model parameters, along with accounting for

measurement noise, allow for training RL agents that can more effectively handle the

thermal dynamics of different substrates and operational variabilities of the APPJ. We

first test the RL agents in simulations to asses their performance in temperature setpoint

tracking for a broad range of model parameters pertaining to thermal and electrical

properties of a target substrate. We then experimentally compare the ability of the RL

agents to track temperature setpoints on glass, aluminum, and polyimide substrates.

We further demonstrate that the best performing RL agent is also capable of rejecting

step disturbances in the jet tip-to-substrate separation distance.
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(a) (b)

Figure 1: (a) Visual appearance of the plasma, and (b) schematic of the APPJ setup

used for testing of the RL agents and validating the model from which the training data

is generated. The applied voltage Vapp is manipulated via an embedded proportional-

integral controller to control the plasma power P . The embedded controller uses

real-time measurements of voltage V and current I. The substrate temperature Ts
is measured using an infra-red thermal camera.

2. Experimental setup

2.1. Atmospheric pressure plasma jet

The kHz-excited APPJ in He used for testing the RL agents and validating the model

from which the training data is generated is shown in Figure 1 and has been described in

detail elsewhere [15, 16]. The APPJ consists of a quartz dielectric tube (inside diameter

of 3 mm and outside diameter of 4 mm) and a powered copper ring electrode placed 1

cm from the tube nozzle. An aluminum plate acts as the ground. The target substrates

are placed on the aluminum plate under the APPJ for treatment. A helium flow of 1.5

slm is maintained in the tube via a mass flow controller. The APPJ is ignited with

AC high voltage, generated by a custom designed function generator (XR-2206CP) at

a frequency of 20 kHz.

The applied discharge power P is maintained by an embedded proportional-integral

(PI) controller that manipulates the applied voltage based on analog measurements of

voltage and current. The PI controller is implemented with a sampling time of 20 ms

on an Arduino UNO microcontroller. The substrate temperature at the plasma incident

point is measured via a radiometric infra-red thermal camera (Lepton FLIR 3.5) pointed

to the substrate. The APPJ inputs and measured outputs are coordinated via a Wi-Fi

enabled single board controller (Raspberry Pi 3). The measurement sampling time is

fixed at 1.3 s. The RL agents are implemented on a remote computer, where input and

output information is exchanged via TCP/IP protocol over Wi-Fi.
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Table 1: The normalized cooling and heating rate parameters of the physics-based

model (1) for the substrates borosilicate glass, aluminum plate, and polyimide tape as

estimated from experimental data.

Substrate µ1 µ2

Glass 2.39 0.82

Aluminum 1.17 0.71

Polyimide 3.71 1.92

2.2. Physics-based model of thermal dynamics of substrate

The complexity of plasma-substrate interactions and disparity of the timescales of

physical phenomena generally make physics-based modeling of APPJs challenging.

However, under fairly standard assumptions, the thermal response of substrates to

plasma treatment can be described by physics-based models based on volume-averaged

mass and energy balances [15]. Here, we conduct a volume-averaged energy balance on

the substrate to describe the dynamics of the substrate temperature, Ts, at the plasma

incident point
dTs
dt

=
1

ρcpAcd

(
µ̄2ηP − µ̄12πrdk(Ts − T∞)

)
. (1)

Here, ρ, cp, and k are the density, heat capacity, and thermal conductivity of borosilicate

glass, which is the nominal substrate; r is the internal radius of the APPJ tube; Ac = πr2

is the cross-sectional area of the APPJ tube; d is the depth of the averaged substrate

volume; η represents the fraction of power dissipated on the substrate P ; and T∞ is

the ambient temperature. µ̄1 and µ̄2 are parameters that scale the cooling and heating

rate of the substrate respectively. We fit the values µ̄1 and µ̄2 based on experimental

data collected over three substrates with different electrical and thermal dynamics: bare

borosilicate glass coverslip, grounded aluminum plate, and borosilicate glass coverslip

with polyimide tape on the surface. Table 1 lists the estimated parameters µ̄1 and

µ̄2 normalized to the order of one; note that the normalized parameters are denoted

by µ1 and µ2. The values of the model parameters and the normalization factors are

presented in Appendix A. The physics-based model (1) is used to generate in silico data

for training and testing of the RL agents.

3. Design of reinforcement learning agents

We aim to design RL agents that dictate the APPJ input power P to track user-specified

setpoints for the substrate temperature under the range of thermal dynamics spanned by

glass, aluminum, and polyimide substrates in the presence of inherent variabilities of the

APPJ. We refer to an agent that has been trained for this purpose as an RL controller

(RLC). As shown in Figure 2, RL generally relies on four key steps to train an agent:

(i) generating simulated data and/or collecting live data for training, (ii) evaluating
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the reward for the training data based on a user-specified control objective, (iii) fitting

a model to allow evaluation of the agent’s performance, i.e., to provide reinforcement,

and (iv) updating the RL agent to improve its performance based on the feedback. The

following sections review basic RL concepts and discuss the training procedure of three

RLCs for the APPJ thermal treatment considered in this paper. More details on the

RLC training can be found in Appendix B.

3.1. States, actions, and rewards

Designing an RL agent requires defining the state of the system at each time step t, st,

the action available to the agent, at, as well as the reward signal, rt, used to evaluate

the RL agent’s performance. Considering the discrete-time version of the model (1), we

choose the state for the RL agent based on the history of the system as follows

st = {Ts,t−i − T sps , Pt−1−i | i ∈ [0 . . m]} , (2)

where T sps is the user-specified temperature setpoint. Thus, the state st ∈ R2(m+1)

consists of temperature deviations from the setpoint and applied power for the past m

time steps. Here, we choose m = 3. Accounting for the history of the treatment in the

state allows the RLC to implicitly build its own model of process dynamics [39]. The

control action at the current time step, at ∈ R, consists only of the applied power P

at = {Pt} . (3)

Note here that P is constrained by the limitations of the experimental setup. Hence,

actions dictated by the RLC falling outside the bounds 1.1 W < Pt < 5.0 W are

saturated at the limits. The bounds on P introduce nonlinearity, which should be

captured in the training data.

The reward function aims to quantify the control objective. In this case, the reward

Figure 2: A simplified block diagram describing the key components of reinforcement

learning [38].
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function is designed to ensure the RLC maintains the temperature at the setpoint

rt(st, at) =

{
10 Ts,t+1 − T sps ≤ ε

−|Ts,t+1 − T sps | otherwise.
(4)

Here, ε denotes a tolerance level that corresponds to a setpoint tracking offset deemed to

be as good as perfect setpoint tracking. This reward function is designed to account for

the fact that, in practice, process and measurement noise may prevent perfect setpoint

tracking. Therefore, the inclusion of the tolerance ε helps the RL agent learn a policy

that tracks the setpoint more effectively. The value of ε = 0.1 is chosen based on the

observed noise level in the measurements, but it can be modified based on the application

requirements.

3.2. Reinforcement learning control

The RLC takes the mathematical form of what is known as a control policy. This

control policy, π(a|s), is a probability distribution of the applied power (i.e., the action

space) conditioned on the history of applied power and temperature deviations from

setpoint (i.e., state). In other words, querying the control policy by feeding st returns the

parameters of a conditional distribution from which the action at to be taken is sampled.

While the policy specifies how the RLC takes actions, in general, a state transition model

p(st+1|st, at) provides a probabilistic description of how the system’s state evolves in time

in response to the control actions. The transition model is determined by the system

dynamics, as modeled by the substrate dynamics given by (1). Nominally, this model

generates deterministic transitions. Note that model (1) is simplistic and may deviate

significantly from the true dynamics of the system, p∗(st+1|st, at).

3.3. Goal of reinforcement learning control

Using the control policy and the state transition model, we can propagate the system

state forward in time to generate simulated trajectories or “roll-outs” of time length T ,

denoted by a sequence of state-action pairs τ = (s0, a0, s1, ..., aT−1, sT ). Therefore, the

probability of generating a given roll-out

p(τ |π) = p(s0)
T−1∏
t=0

p(st+1|st, at)π(at|st) (5)

depends on both the system dynamics and the RLC policy. The objective during the

learning procedure is to find some optimal policy πopt that maximizes the expected

return of the agent, J(π),

πopt = arg max
π

J(π) (6)

with

J(π) = Eτ∼p(τ |π)

[
T−1∑
t=0

rt(st, at)

]
. (7)
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Figure 3: Generic schematic of (a) an actor policy and (b) a critic network. The state

is the input to each network. The actor takes the form of a control policy, πθ(a|s),
parameterized by weights θ. The critic approximates the value function for the policy,

V̂ π
φ , parameterized by weights φ.

where E is the expectation operator. In other words, we seek to maximize the

expectation value of the accumulated rewards over the roll-outs sampled from the

distribution of trajectories generated by the model (1) and the control policy, τ ∼ p(τ |π).

The expectation of J(π) can be computed by sampling trajectories of the state dynamics

by Monte Carlo simulations.

3.4. Actor-critic algorithm

In this work, we use a variant of policy gradient RL [38, 40], along with dynamics

randomization for sample generation [37] to achieve effective substrate temperature

control across a range of substrate dynamics (see next section). Specifically, we use

the actor-critic algorithm that relies on using two ANNs termed the actor and critic

networks that are trained in tandem; as shown in Figure 3 [28, 41]. The actor neural

network, parameterized by weights θ, defines the control policy πθ(at|st). Since the

action space is one-dimensional in this application (only the applied power P ), the actor

outputs the parameters of a Gaussian distribution, which is then sampled to yield an

action. On the other hand, the critic network is parameterized by weights φ, and is used

to approximate the value function, V̂ π
φ (st). This value function is the expected value of

future rewards at the current state st under the current control policy. That is, V̂ π
φ (s)

indicates how valuable it is to be at a given state under π based on the reward function.

During training, V̂ π
φ (s) is used to approximate the gradient of the reinforcement learning

objective ∇θJ(π).

The weights θ and φ are trained to maximize the RL objective (7) by the actor-critic

algorithm, the details of which are presented in Appendix B. Briefly, the weights of the

actor and the critic are both initialized randomly at the beginning of training. Thus,

both the actor and critic may commence with poor performance and try to improve,

respectively, in approximating the optimal control policy and the value function. The
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actions computed by the actor are initially sub-optimal actions as the actor “explores”

the system dynamics. During each training iteration, simulated roll-outs are collected

(see next section) and rewarded. A gradient step is then taken to update the actor and

critic network weights to improve their performance in their respective tasks. As the

training proceeds, the variance of the distribution of the actions shrinks as the control

policy is optimized toward accumulating higher rewards. In this work, deep ANNs are

used for both the actor and the critic, with two hidden layers and 64 nodes per layer.

The algorithm is implemented using Tensorflow [42] and the scripts are provided in the

repository at [43].

3.5. Simulated data generation for sim-to-real transfer with dynamics randomization

Each training iteration (or epoch) requires the generation of a new batch of simulated

data from the current policy, after which the gradient of (7) is computed and used to

update the weights of the actor network (see Appendix B for details). Each training

epoch consists of collecting N simulated roll-outs of time length T from the current

policy, i.e., sampling trajectories according to (5). This is achieved using Monte Carlo

sampling where the transition dynamics are given by the physics-based model (1). Here,

we use the nominal values of N = 100 roll-outs and T = 100 time steps per roll-out

for generating the training data at each epoch. At the beginning of each roll-out, a

new setpoint is randomly chosen from the uniform distribution, Tsp ∼ U(34, 46). Each

roll-out then consists of the response of the system model to the actor policy for a given

setpoint change.

The parameters µ1 and µ2 of the physics-based model (1) must also be specified

to generate the training roll-outs. These model parameters are estimated from

experimental data for every target substrate (see Table 1). However, the model merely

provides an approximation of the thermal dynamics of the different substrates. This

makes training with dynamics randomization of the parameters µ1 and µ2 critical. Using

the dynamics randomization method [37], the RL objective is now to maximize the

expected rewards when the model parameters are no longer constant, but sampled from

a parameter distribution ρµ

J(π) = Eµ∼ρµ

[
Eτ∼p(τ |π,µ)

[
T−1∑
t=0

rt(st, at)

]]
. (8)

Now, at the beginning of each training roll-out, we sample µ1 ∼ ρµ1 and µ2 ∼ ρµ2
such that the transition dynamics, p(τ |π, µ), are different in each roll-out. This allows

development of a single RL agent for controlling the temperature of the substrate across

the three different substrates considered in this work. Here, we choose ρµ such that it

represents the range of thermal dynamics of the different substrates. In addition to the

dynamics randomization, the substrate temperature predictions of the physics-based

model are “corrupted” by white noise with standard deviation σT = 0.1 to account for

the actual measurement noise of the experimental data. We train 3 RLCs in this work
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Table 2: The parameter sampling scheme used to train the Glass RLC (G-RLC), Glass

Uncertainty RLC (GU-RLC), and Ensemble RLC (E-RLC).

µ1 µ2 σT

G-RLC 2.38 0.82 0.0

GU-RLC N (2.38, 0.2) N (0.82, 0.05) 0.11

E-RLC (µ1, µ2) ∼
{(0.80, 0.40), (0.80, 0.55), (0.80, 0.65),

(1.12, 0.56), (1.12, 0.71), (1.12, 0.86),

(2.39, 0.82), (2.39, 1.02), (2.39, 1.22),

(4.00, 1.50), (4.00, 1.80), (4.00, 2.20)}

0.11

based on three different choices of ρµ, as summarized in Table 2. The Glass RLC (G-

RLC) is trained only using a single set of parameters that correspond to the values fitted

for the borosilicate glass substrate and no measurement noise. This is the base case with

no dynamics randomization. The Glass Uncertainty RLC (GU-RLC) is trained using

data generated based on a normal distribution of the parameters centered around those

fitted for the borosilicate glass substrate. The measurement noise is added to the model

predictions in this case. Finally, the Ensemble RLC (E-RLC) is trained by discrete

uniform sampling from an ensemble of 12 sets of (µ1, µ2), which are chosen to be a

representative selection of possible substrate dynamics, in the presence of measurement

noise. In this case, dynamics randomization allows us to explicitly define the range of

temperature dynamics that the RLC is expected to handle. The substrate temperature

responses for various parameter values sampled from ρµ during the training of the E-

RLC are shown in Figure 4. Note that the input power values of 1.1 W and 5 W used

in Figure 4 correspond to the minimum power at which the plasma remains ignited and

the maximum power achievable given the constraints of the APPJ.

3.6. Performance evaluation

To quantitatively evaluate the performance of the three RLCs, we define the mean

absolute error in setpoint tracking

MAE = 1/(T − b)
T∑
t>b

|Ts,t − T sps | (9)

and the cumulative input change as

CI =
T∑
t>b

|Pt − Pt−1|, (10)

which quantifies the control effort. Note that a minimal control effort corresponds

to better control. We choose b = 60, neglecting the first 60 time steps to make the
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quantitative performance comparisons independent of the initial state of the APPJ.

This allows minimizing the effects of unavoidable day-to-day experimental variations

in ambient temperature. A high-performance plasma treatment corresponds to a low

MAE and low CI.

4. Results: In silico control performance

The goal of the sim-to-real transfer learning strategy with dynamics randomization is

to allow the RLC to generalize its control performance to a large variety of target

substrates. Before validating our approach in real-time experiments, we quantify the

performance of the three RLCs in a simulation environment using the physics-based

model.

4.1. Baseline setpoint tracking

We first test the G-RLC in silico on the model of the borosilicate glass substrate in

the absence of measurement noise via the closed-loop setpoint tracking simulations

shown in Figure 5. Since there is no noise and there is no mismatch between the

substrate temperature dynamics and the data generated to train the G-RLC, the control

performance is excellent as expected. Thus, this study provides a baseline for the

performance of the different RLCs, with the performance of G-RLC quantified by a

MAE = 0.16 and a CI = 69.2.
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Figure 4: The predicted temperature response of the physics-based model to a step

input power of (a) 1.1 W starting from an initial temperature of 46 ◦C and (b) 5 W

starting from an initial temperature of 34 ◦C. The solid lines show the temperature

response for different samples of the parameters (µ1, µ2) used to train the E-RLC, and

the black stars and blue squares correspond to the fitted aluminum and glass thermal

dynamics, respectively.
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4.2. Improving controller performance

We use the setpoint profile in Figure 5 to test the three RLCs across a range of substrate

parameters and ambient temperatures. Our goal is to quantify the in silico setpoint

tracking performance under a range of conditions in order to test the extent to which the

dynamics randomization in training can improve the control performance. Figures 6 and

7 show color surfaces of the MAE and CI for the three RLCs under different realizations

for the parameters (µ1, µ2) as well as three different values for the ambient temperature

T∞. Each point in these plots is obtained by performing a closed-loop setpoint tracking

simulation corrupted with measurement noise, where the substrate parameters µ1 and

µ2 are shown on the axes. Each point represents the performance of the RLC agent

for different substrate dynamics in silico. In each plot, the parameter combinations

corresponding to experimentally obtained values for the glass, aluminum, and polyimide

substrates are denoted by the light blue, black, and green stars, respectively (see Table

1). Note that, given the physical bounds on the input power P , it may not be practical

to achieve adequate setpoint tracking for any substrate type (i.e., any realization of the

substrate parameters). That is, at a given ambient temperature, some or all of the

setpoints may be unreachable because of the actuation limitations of the input power.

The unachievable temperature setpoints result in a high MAE and a low CI, indicating

that the power input saturates at the bounds while the temperature setpoint is not

achieved. This manifests itself as the triangle-shaped regions in each of the plots in

Figures 6 and 7.

Figure 6 indicates that the G-RLC provides (perhaps surprisingly) high-

performance in silico when tested against a wide range of parameters. However, as

µ1 increases while the ratio µ2/µ1 is kept constant (i.e., along the plot diagonal), we

observe that the setpoint tracking performance deteriorates (i.e., MAE increases) using

the G-RLC. By accounting for measurement noise and a small degree of parameter

uncertainty while training the GU-RLC, the control performance can be somewhat

measured setpoint measured bounds
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Figure 5: The closed-loop control performance of the G-RLC is tested in silico on the

model of the borosilicate glass substrate in the absence of measurement noise. The

setpoint tracking performance (left) achieves a MAE = 0.16 and the power input (right)

achieves a CI = 69.2.
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Figure 6: In silico evaluation of the control performance of the three RLCs. Each subplot

shows the MAE of the closed-loop temperature setpoint tracking simulations for different

realizations of the substrate parameters (µ1, µ2) at three different ambient temperatures

T∞. The model predictions are corrupted with measurement noise. Black, blue, and

green stars represent, respectively, the model parameters fitted for the aluminum,

borosilicate glass, and polyimide substrates.

improved. However, the most significant improvement is achieved with the E-RLC,

where the control performance becomes significantly more robust to changes in the

substrate properties that may lead to extremely fast temperature dynamics and/or

high sensitivity to changes in process inputs (i.e., large process gains). Note that for

µ1/µ2 >> 1 and µ1/µ2 << 1, poor control performance (very high MAE) is observed

for all of the RLCs since these substrate parameters correspond to system dynamics

in which the the power input bounds prevent effective tracking of the prescribed

setpoints. Moreover, the reachable temperature setpoints are a function of the ambient

temperature T∞. For example, it may be difficult to track high temperature setpoints

on colder days (i.e., lower T∞).

To investigate the performance improvement of the E-RLC, Figure 7 shows the CI

that corresponds to the same setpoint tracking simulations as in Figure 6. The regions

in Figure 6 for which MAE is drastically reduced with the E-RLC (i.e., better control

performance) also show a large reduction in CI in Figure 7. The results suggest that

the E-RLC yields comparable or better performance (i.e., lower MAE) with less control

effort (i.e., lower CI) than the G-RLC. This implies that the E-RLC has learned a control

policy that improves the setpoint tracking performance while simultaneously decreasing
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Figure 7: In silico evaluation of the cumulative input change of the three RLCs. Each

subplot shows the CI of the closed-loop temperature setpoint tracking simulations for

different realizations of the substrate parameters (µ1, µ2) at three different ambient

temperatures T∞. The model predictions are corrupted with measurement noise.

Black, blue, and green stars represent, respectively, the model parameters fitted for

the aluminum, borosilicate glass, and polyimide substrates.

Table 3: Performance metrics for the G-RLC and E-RLC tested via in silico simulations

on the borosilicate glass, aluminum, and polyimide substrates.

MAE CI

Substrate G-RLC E-RLC G-RLC E-RLC

Glass 0.24 0.24 126.1 69.1

Aluminum 0.25 0.23 136.3 72.5

Polyimide 0.56 0.21 415.6 109.2

the control effort across a broad range of substrate dynamics. The performance

metrics of the G-RLC and E-RLC for the closed-loop simulations performed using the

experimentally determined parameters for glass, metal, and polyimide substrates are

given in Table 3, and the time-course input power and substrate temperature profiles

are shown in Appendix C. Table 3 indicates that the E-RLC can result in a particularly

significant performance improvement on the polyimide substrate with a 2.5-fold decrease

in MAE and a 4-fold decrease in CI.
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Figure 8: The temperature setpoint tracking performance of the G-RLC (a,c,e) and E-

RLC (b,d,f) in real-time control experiments of the APPJ treatment of the borosilicate

glass (a,b), aluminum (c,d), and polyimide (e,f) substrates. The E-RLC significantly

outperforms the G-RLC in every case in terms of the setpoint tracking error (left column)

and control effort (right column).

5. Results: Real-time experiments

5.1. Temperature control on different substrates

We perform real-time control experiments using both the G-RLC and E-RLC on

the APPJ setup described in section 2.1. We test the RLCs on three different

substrates: borosilicate glass, aluminum, and polyimide. Results of the closed-loop

control experiments are shown in Figure 8. As can be seen, the control performance

of the E-RLC is notably better than the control performance of the G-RLC over all
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Table 4: Performance metrics for the G-RLC and E-RLC tested via real-time control

experiments of the APPJ for treatment of the glass, aluminum, and polyimide

substrates.

MAE CI

Substrate G-RLC E-RLC G-RLC E-RLC

Glass 0.19 0.12 98.3 48.6

Aluminum 0.64 0.30 240.1 73.0

Polyimide 0.81 0.24 499.6 129.3

substrates. While the G-RLC performs well on the borosilicate glass substrate (Figure

8a), the E-RLC performs better with a 33% reduction in MAE and a 50% reduction

in CI (see Figure 8b and Table 4). The presence of unmodeled dynamics in the

experimental setup as well as the uncertainty associated with the estimated parameters

µ1 and µ2 result in performance deterioration of the G-RLC compared to simulation

studies. Small oscillations in the input and small setpoint overshoots are observed

when the G-RLC encounters dynamics that are not exactly what the agent was trained

on. In contrast, the E-RLC provides excellent setpoint tracking performance with low

control effort, comparable to the base case shown in Figure 5. Achieving acceptable

control performance with G-RLC over aluminum and polyimide substrates is even more

challenging since the temperature dynamics of both substrates are considerably different

than that of glass. Both substrates exhibit thermal dynamics that are highly sensitive to

changes in the input power (i.e., large process gain), with relatively slow settling times

for aluminum and relatively fast settling times for polyimide. For both substrates, the

G-RLC struggles to maintain the setpoint (Figure 8c and 8e). The input oscillations

and setpoint overshoots are more pronounced over these substrates as the mismatch

between the training data of the G-RLC and the actual system behavior is greater. Large

oscillations in the power input indicate the increased control effort of the G-RLC. In

contrast, the E-RLC can follow the temperature setpoint more closely with considerably

less control effort (Figure 8d and 8f). The performance of the G-RLC and E-RLC on

the three substrates is summarized in Table 4. The E-RLC demonstrates significant

improvement in setpoint tracking on all three substrates with much less control effort.

5.2. Disturbance rejection

Lastly, to test the capability of the E-RLC for effective substrate temperature control

beyond the setting on which it was trained (i.e., responding to setpoint changes),

we introduce a disturbance to the APPJ operation. Changes in the jet tip-to-

substrate separation distance present a relevant disturbance to APPJ applications. Such

disturbances can arise due to the substrate topology or variations in the separation

distance during hand-held APPJ treatments, which in turn can have a significant effect
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Figure 9: The temperature setpoint tracking performance of the E-RLC in real-time

control experiments of the APPJ for treatment of the glass substrate when the jet tip-

to-substrate separation distance undergoes step changes from 4 mm to 6 mm, 6 mm to

8 mm, and 8 mm to 10 mm.

on thermal dynamics of the substrate [12, 13, 15]. Here, we investigate the performance

of the E-RLC in effectively maintaining a constant substrate temperature when the

separation distance is abruptly changed. Figure 9 shows the performance of the E-RLC

in controlling the substrate temperature as the separation distance is increased by 2 mm

in a step-wise manner. As can be seen, the E-RLC can quickly recover and maintain

effective setpoint tracking after such a disturbance. Note that the scale of the y-axis

in Figure 9 is ± 1 oC, suggesting that the excursions of the substrate temperature

are on the order of only 0.5 oC. At high separation distances (>10 mm), the substrate

temperature and the power input start to fluctuate. This can be attributed to the

fact that at this separation distance the plasma is on the verge of decoupling from the

substrate and thus the plasma starts exhibiting unstable behavior. Within this operating

region, the available actuation of the APPJ is not adequate for effective regulation of

the thermal behavior of the substrate.

6. Discussion

This paper aimed at addressing a major challenge in feedback control of APPJs for

treatment of complex substrates: how to account for variations in the plasma dynamics

and/or plasma-substrate interactions using learning-based control. We demonstrated

how simulated training data can be used to obtain a high-performing reinforcement

learning controller for controlling the thermal effects of a kHz-excited APPJ in He on

a variety of substrates with greatly different thermal and electrical properties. It was

shown that the broad range of dynamics of the plasma-substrate interactions can be

effectively accommodated by using random realizations (i.e., dynamics randomization)

for parameters of a physics-based model used to generate the training data. Without

using dynamics randomization, in silico and real-time control experiments showed

that the RLC can be ineffective when it encounters a substrate that has significantly

different dynamics than that the agent was trained on. In contrast, by using dynamics
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randomization, we achieved a significantly improved control performance over the

parameter range tested in silico and over three substrates (i.e., glass, aluminum, and

polyimide) in real-time experiments. This demonstrates the importance of dynamics

randomization for successful sim-to-real transfer of an RLC.

Our in silico training procedure and subsequent successful transfer to the APPJ is

important for several reasons. Firstly, the in silico training is orders of magnitude faster

compared to using data collected from experiments. A maximum return for the RLC

policy is achieved after approximately 500 training epochs with 10,000 time steps per

epoch. Since our APPJ sampling frequency is fixed at 1.3 s−1, a training procedure based

on experimental data would take ∼75 days of non-stop APPJ operation. In contrast,

in silico training was completed in approximately 1 hour and 50 minutes (0.075 days).

Future research will investigate if more sample efficient RL algorithms would enable

training of RL agents with limited experimental data. An additional challenge in using

experimental data is that the facile selection of an ensemble of model parameters in

silico cannot be easily replicated in an experimental setting. To perform training with

dynamics randomization of real experiments (i.e., in vivo training), one would need

extensive experiments to find a representative set of substrates that sufficiently spans

the space of model dynamics one wishes to train over. It can be inconvenient, if not

impractical, to change the experimental conditions to cover the entire model parameter

space that the RLC may need to operate within during the APPJ operation. Finally, a

key requirement of APPJ treatments is safety, particularly in a medical context where

the substrate is a patient receiving treatment. Training RL agents in vivo can inflict

damage on the target substrate, especially in early iterations, making this approach

prohibitive. By avoiding any in vivo training, we can ensure high-performing RL agents

can be designed and tested in silico before applying the controller in the real world.

An attractive feature of the proposed sim-to-real transfer approach is the use of

a simple model of the substrate temperature dynamics in conjunction with dynamics

randomization. The speed-up in training allowed by using a computationally inexpensive

model was appreciable and dynamics randomization allowed accommodating a range of

experimentally observed dynamics. However, there may be limitations to using such

simple models. Particularly, we restricted our model structure to be linear and focused

on a single output variable, the substrate temperature. On the other hand, APPJs can

exhibit a range of nonlinear behaviors and may have multiple (e.g., chemical, electrical,

thermal) effects on target substrates. In this work, mildly nonlinear temperature

dynamics were observed on the aluminum substrate, which resulted in a somewhat

oscillatory temperature response even with E-RLC strategy (see Figure 8d). Thus,

future work will involve using more complex, nonlinear and multivariable models of the

APPJ to generate simulation training data. The proposed sim-to-real transfer approach

can be readily applied using models of arbitrary complexity. However, the trade-off

between model complexity and training time must be taken into account. It may be

challenging to train RL agents using data generated with models with a large number

of uncertain parameters, as the required training time grows with parameter space that
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is sampled during training.

There remain many interesting extensions and improvements of the proposed sim-

to-real transfer approach in order to explore the potential role of RL in the regulation

of cumulative and spatially varying plasma effects, i.e., dose delivery. In most APPJ

applications, one wishes to administer a predetermined dose as accurately as possible

over a two-dimensional surface in a fixed period of time. The E-RLC agent developed in

this work can be useful as a lower level controller for fast disturbance rejection, thereby

allowing effective temperature regulation across substrates with different electrical and

thermal dynamics [44]. Moreover, RL can be useful in analyzing and integrating more

complex sensory information such as optical emission spectra and current waveforms

for diagnostics applications [45], and incorporate further manipulated inputs for control

problems. An interesting future research will be to see if more recent techniques such as

Generalized Advantage Estimate [46], Proximal Policy Optimization [47], or Soft Actor-

Critic algorithms [48] are necessary to succeed in these more complex APPJ control

problems. The proof-of-concept demonstration in this work indicates the vast potential

of reinforcement learning in complementing and, in some instances, replacing classical

and advanced control strategies for effective treatment delivery with APPJs.
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Appendix A. Physics-based model predictions versus experiment

The parameters of the physics-based model are summarized in Table A1. The model

is validated against experimental measurements; Figure A1 shows the measured and

predicted temperatures of the glass substrate as the applied power is increased in a

step-wise manner. The model appears to provide a reasonable approximation of the

observed substrate temperature dynamics.

Table A1: Parameters of the physics-based model of the thermal dynamic of the

substrate

Parameter Value

ρ 2.8×103 kgm−3

cp 795 Jkg−1K−1

d 0.2 mm

r 1.5 mm

η 0.4

k 1.43 Wm−2K−1

µ̄1 38µ1

µ̄2 0.003µ2

Appendix B. Details of the actor-critic algorithm

Some additional details of the actor-critic algorithm not presented in the main text are

included in this section. Several actor-critic variants of policy gradient exist [38, 25],
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Figure A1: Experimental validation of the physics-based model on a glass substrate.

(a) Applied APPJ power and (b) predicted and measured values of the substrate

temperature.
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which commonly seek to estimate the gradient of the expected rewards with respect to

the policy. The form of the gradient common to these methods is as follows [46],

∇θJ(θ) = E

[
T−1∑
t=0

Rt∇θ log πθ(at|st)

]
(B.1)

where the form of Rt varies between the different methods. For example, for the

most basic version of policy gradient, Rt =
∑T−1

t=0 rt. The problem is that sampling

this quantity produces a very high variance rewards signal. Many policy gradient

methods seek to reduce this variance, and Ref. [46] provides an excellent summary. The

aforementioned references provide relevant derivations; in this work, we use the gamma-

discounted TD-residual, Rt = rt + γV π(st+1) − V π(st), which reduces the variance in

the rewards signal (the discount factor, γ ∈ [0, 1.0], is introduced to discount future

rewards). Specifically, it uses the value function, defined as the expected future rewards

under the current policy from being in st.

V π(st) = Est+1:∞,at:T−1

[
T−1∑
∆=0

rt+∆

]
(B.2)

Now, combining (B.1) with the TD-residual and estimating the expectation value over

N different MC roll-outs, we can rewrite the gradient as follows:

∇θJ(θ) ≈ 1

N

N∑
i=1

T−1∑
t=1

∇θ log πθ(ai,t|si,t) (ri,t + γV π(si,t+1)− V π(si,t)) (B.3)

Once (B.3) has been computed, we can maximize the expected rewards by taking a

gradient step in θ. This equation also provides the link between computing the policy

gradient and the two network actor-critic structure summarized in the main text. In the

two ANN design, the policy is specified by the outputs of the actor network, πθ(a|s), and

the value function is approximated by the critic network, V̂ π
φ (st). The actor and critic

can now be trained in tandem via Algorithm 1 where the corresponding block diagram

is shown in Figure B1. Note that Figure B1 is the actor-critic specific realization of the

more general reinforcement block flow diagram shown in Figure 2.

1. Monte Carlo roll-outs:

The details of roll-out collection using domain randomization were discussed in the

main text. Briefly, we collect N = 100 simulated roll-outs of T = 100 time steps.

At the beginning of each roll-out a new setpoint is randomly chosen from the uniform

distribution, Tsp ∼ U [34, 46] and trajectories are propagated forward in time based on

the transition model and control policy. This can be expressed succinctly as collecting

N × T tuples of (st, at, st+1, rt) where the model transitions p(st+1|st, at, µ) depend on

the model parameters chosen to be sampled, µ ∼ ρµ, in a given roll-out.
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Algorithm 1 Online, two network actor-critic

1: for each actor training iteration do

2: policy roll-outs: collect (st, at, st+1, rt) for all N × T time steps

3: for number of critic target updates do

4: compute critic targets: zt = rt + γV̂ π
φ (st+1)

5: for gradient steps per target updates do

6: compute critic loss: L(φ)

7: update critic: φ← φ+ α∇φL(φ)

8: estimate TD residual: R̂t = rt + γV̂ π
φ (st+1)− V̂ π

φ (st)

9: compute cost gradient: ∇θJ(θ) ≈ ∇θ log πθ(at|st)R̂t

10: update actor: θ ← θ + α∇θJ(θ)

2. Critic training:

The goal of the critic network is to approximate the value function with weights φ,

V̂ π
φ (st). Once a batch of simulated data has been collected and the rewards computed

under the current iteration of the policy, the value function must be approximated, i.e.

fit to the data that has been collected. When using the TD-residual, this must be done

in an iterative manner. The difference between the critic network’s predictions for each

state, V̂ π
φ (st), and its target values, zt, as shown in Algorithm 1, are formulated as the

Figure B1: A block diagram representation of the actor-critic algorithm for training the

RLC
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critic network’s loss and minimized by optimizing the weights of the critic network:

L(φ) =
1

N

∑
t

||zt − V̂ π
φ (st)||2 (B.4)

However, once this loss has been minimized, the critic’s predictions are no longer self-

consistent with the new values of φ. Hence the target values must be recomputed and

the minimization process repeated. Within each actor training step, we update the critic

target values ten times, and we update the critic network with ten gradient steps per

target update.

3. Actor update

Once the critic network has been optimized for the current batch of simulated data,

the policy gradient can be computed via (B.3) and a gradient step computed in θ (with

learning rate α) to improve the control policy for the next iteration of data collection.
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Figure B2: Training curves for the G-RLC with a learning rate of 0.005 and the E-RLC

with both a learning rate 0.005 and 0.003.

The learning curves for the G-RLC with a learning rate of 0.005 and the E-RLC with

both a learning rate of 0.005 and 0.003 are shown in Figure B2. The average return

per MC roll-out is plotted versus actor training iteration. The G-RLC quickly learns

a control policy that practically achieves the maximum possible return based on the

rewards structure described in the manuscript (rmax(st, at) = 10 for T = 100 time

steps per MC roll-out). The G-RLC training takes longer to plateau and achieves

a lower average return than the E-RLC, but this should not be interpreted as a

shortcoming. The E-RLC training incorporates measurement noise, which inherently
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makes the setpoint tracking more difficult. The E-RLC must also operate on a wide

range of different model dynamics. In each training iteration, some fraction of the E-

RLC roll-outs are performed with very slow substrate dynamics (see Figure 4), and the

limitations of these slow dynamics combined with a bounded action space reduce the

minimum setpoint tracking error that can theoretically be achieved. We also highlight

the sensitivity of the training to the learning rate, as demonstrated by the more stable

E-RLC training when a learning rate of 0.003 is used.

Appendix C. Visualization of in silico set point tracking experiments

In silico setpoint tracking simulations of the 3 RLC controllers are shown in Figure

C1, whose quantitative performance metrics were presented in Table 3. The largest

performance gain with the E-RLC occurs on the polyimide substrate model (Figure

C1f). Notably from Figure 7, the CI is also significantly reduced with the E-RLC

in the vicinity of borosilicate glass and aluminum parameters. The setpoint tracking

performance on an aluminum substrate is plotted in Figure C1c-d, which show how the

E-RLC demonstrates better control performance than the G-RLC. Not only does the

E-RLC achieve slightly lower MAE, the CI is also significantly reduced as the E-RLC

becomes better at controlling the temperature without exhibiting the more oscillatory

input profiles obtained under the G-RLC. Regardless, it is important to note that the

G-RLC performs surprisingly well across a range of model parameters, given the large

difference in temperature dynamics between borosilicate glass and aluminum substrates.

However, this moderate transferability of the G-RLC only applies to in silico results as

is shown in the feedback control experiments.
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Figure C1: The temperature setpoint tracking performance of the G-RLC (a,c,e) and

E-RLC (b,d,f) in closed-loop simulations of the APPJ treating a borosilicate glass

(a,b), aluminum (c,d), and polyimide (d,f) substrate. The performance of the E-RLC

is significantly better for each substrate compared to that of the G-RLC in terms of

setpoint tracking error (left column) and control effort (right column).
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