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Abstract: Active power control of wind farms remains an open challenge due to inherent
noise in wind power that arises from uncertain wind speed measurements and plant/model
mismatch. To leverage the heteroscedastic nature of the wind power noise, heteroscedastic
Bayesian optimisation (BO) is used for active power control of wind farms. BO utilises closed-
loop performance data to tune the parameters of a stochastic model predictive controller
(SMPC) in a systematic and data-efficient manner. This, in turn, allows for enhancing the
closed-loop performance of the controller intended to decrease the power tracking error. A case
study with 9 turbines in a 3x3 wind farm shows that the heteroscedastic BO approach achieves
a reduced closed-loop power tracking error in terms of root-mean-square by 8.89% compared
to one that relies on nominal BO and a decrease by 64.99% compared to a nominal model
predictive controller (MPC) whose performance is not tuned using closed-loop data and BO.

Keywords: Wind farm; active power control; stochastic model predictive control; data-driven
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1. INTRODUCTION

The development and deployment of wind turbines play
a vital role in the transition to net-zero-emission soci-
eties in Europe (WindEurope, 2021). Wind turbines are
commonly placed into grids to form wind farms such that
maintenance and electricity cabling costs are reduced. The
primary control objective of such farms is to reduce the
total levelized cost of wind energy by efficient operation
of the turbines. An important sub-problem for wind farm
control is secondary frequency regulation (a sub-class of
active power control), where the goal is to coordinate
the operation of individual turbines to meet some desired
power reference during a period of several minutes; for
example, see Ela et al. (2014), Spudić et al. (2015), Jensen
et al. (2016), and Siniscalchi-Minna et al. (2018).

However, most approaches for active power control do not
explicitly consider the uncertainty inherent to wind farm
control that can degrade control performance (Boersma
et al., 2019a). This challenge can generally be addressed
with an SMPC (Mesbah, 2016) to explicitly account for
probabilistic uncertainties when their distributions can be
quantified a priori (Boersma et al., 2019a). Nonetheless,
quantifying uncertainties a priori can be impractical, as
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wind power noise is time-variant and heteroscedastic (i.e.,
input-dependent) due to uncertain measurement of the
wind speed. Heteroscedasticity refers here to the prop-
erty that the noise variance varies across some parameter
(input) space. This can occur in power control of wind
farms since turbines’ power outputs are perturbed and de-
pendent on time-varying, uncertain wind speed measure-
ments through the controller. One approach to account
and leverage for heteroscedastic noise in wind speed and,
accordingly, wind power control is through probabilistic
modeling with heteroscedastic Gaussian processes (GP)
(Rogers et al., 2020). Yet, a better noise model does not
necessarily translate to improved closed-loop performance.

This paper proposes a heteroscedastic BO (Guzman et al.,
2021) approach to directly translate closed-loop data
to closed-loop performance with controller auto-tuning
(Khosravi et al., 2022, Paulson et al., 2022) on an SMPC
controller for active power control. The heteroscedastic
BO setup leverages closed-loop data directly to model the
closed-loop cost for increased closed-loop performance by
tuning the SMPC hyperparameters. BO provides a system-
atic and data-effective framework for utilising closed-loop
data gathered from expensive high-fidelity simulations or
actual experiments (Boersma et al., 2017) for SMPC tun-
ing. Advantages of using BO involve the effective handling
the high dimensional and nonlinear SMPC tuning parame-
ters search space, which scales with the number of turbines
in the farm.
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The paper is structured as follows. Section 2 presents the
wind farm system under study. Section 3 presents the
SMPC formulation for wind farms, along with the control-
relevant model of the wind turbines. Section 4 presents
the heteroscedastic BO approach for SMPC tuning using
closed-loop data. The proposed method is validated in Sec-
tion 5 for the case of uncertain wind speed measurements.
Finally, concluding remarks are given in Section 6.

2. WIND FARM SYSTEM

This study focuses on a wind farm system from the
SOWFA ALM simulations with 9 NREL 5 MW turbines
in a 3x3 grid; see Fig. 1. Each of the turbines in the
farm is controlled through axial induction-based control,
where the power output Pi for turbine i ∈ [1, Nt] is
controlled by the disk-based thrust coefficients C ′

i(t) and
yaw angle γi(t) for Nt turbines. The wind speed vi(t) is
assumed measurable at each turbine i, where the measured
wind speed v̂i(t) ∼ N

(
vi, σ

2
vi

)
is perturbed by normally-

distributed noise. Active power control of such a farm aims
at coordinating the turbines to minimise the tracking error
e(t) by meeting some power reference P ref(t)

e(t) = P ref(t)−
Nt∑
i=1

Pi(C
′
i(t), γi(t), v̂(t), t), (1)

while minimising excessive and oscillatory control inputs
due to uncertainty in wind speed measurement.

3. STOCHASTIC MODEL PREDICTIVE CONTROL
FOR WIND FARM CONTROL

This section first introduces a control-relevant model of
a wind turbine for active wind power control. This is
followed by formulating a sample-based SMPC to minimise
the power tracking error (1) under uncertain wind speed
measurements.

3.1 Control-relevant model of turbine

Boersma et al. (2019b) showed that axial induction-based
wind farm power tracking could be achieved with the
following model for turbine power output Pi(t) and thrust
coefficient C ′

i(t) while neglecting wake effects if the control
objective is power tracking

Pi(t) =
πD2

8
(v̂i(t)cos[γi(t)])

3
Ĉ ′

i(t) (2a)

C ′
i(t) = τ

Ĉ ′
i(t)

dt
+ Ĉ ′

i(t), (2b)

where D is the rotor diameter and Ĉ ′
i(t) is the first-order

filtered wind turbine input that is applied to the plant. The
wind farm model can then be modelled as Nt uncoupled
subsystems consisting of (2a) and (2b). For control, (2a)
and (2b) can be temporally discretised at sample period
∆t using a zero-order hold method

xi,k+1 = Aixi,k +Bi(v̂i,k)ui,k, (3)

where xT
i,k = [Pi,k Ĉ ′

i,k] ∈ R2, ui,k = C ′
i,k ∈ R, and

v

3 6 9

2 5 8

1 4 7

1

Fig. 1. An illustration of the chosen wind farm layout of a
3x3 grid with 9 turbines.

Ai = e−∆t/τI2 ∈ R2x2 (4a)

Bi =

∫ ∆t

0

1

τ
e−s/τds

([
πD2

8 v̂3i,k
1

])
∈ R2, (4b)

with k being the current discrete time-step, and γi = 0.

3.2 Sample-based stochastic model predictive control

Commonly, an SMPC is formulated using an expectation-
based operator E for the cost function Jsmpc with chance
constraints defined in terms of the probability operator P

min
x,u

E[Jsmpc (xk,uk,wk)]

s.t. xk+1 = f (xk,uk,wk)

P [h (xk,uk,wk) ≤ 0] ≤ 1− ϵ

x0 = xk0
, wk ∼ N (µ, σ2)

k = k0, k0 + 1, . . . , k0 +NP ,

(5)

where xk, uk, and wk are the system states, inputs, and
uncertainty, f is the state transition function, h are some
inequality constraints, ϵ ∈ [0, 1] denotes the lower bound
of the desired probability for which h should be satisfied
under wk, xk0

is the current measured state at time-step
k0, and NP is the prediction horizon over which the SMPC
optimises the control signals.

For wind farm power control, a tractable sample-based
approximation of (5) without chance-constraints can be
used with γi = 0, given that v̂(t) can be sampled directly
from N (v, σ2

v) while assuming that σ2
v is known a priori

(Boersma et al., 2019a)

min
C′

k

1

Ns

Ns∑
j=1

k0+Np∑
k=k0

(
eTj,kQej,k +

Nt∑
i=0

∆C ′
i,kR∆C ′

i,k

)
s.t. xi,j,k+1 = Axi,j,k +B(v̂i,j,k)ui,k

C ′
min ≤ C ′

i,k ≤ C ′
max

x0 = xk0
, v̂i,j,k ∼ N (vi,k, σ

2
vi,k

)

k = k0, k0 + 1, . . . , k0 +NP

j = 1, 2, . . . , Ns, i = 0, 1, . . . , Nt,
(6)

where Ns is the number of wind speed measurement
samples v̂i,j,k from N (vi,k, σ

2
vi,k

), R and Q are constant
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matrices to be tuned, ∆C ′
i,k = (C ′

i,k − C ′
i,k−1) is the

input rate, and ej,k is the power tracking error (1). The
main idea in the sample-based SMPC (6) is that given a
measured wind speed v̂i(t) ̸= vi(t), Ns samples of v̂i(t)
are chosen from N (vi, σ

2
vi
) to approximate v̂i(t) ≈ vi(t).

The sample-based SMPC increases tracking performance
by reducing the oscillatory control around the reference.
Similarly to nominal MPC, wind farm control is achieved
by solving (6) at each sampling time k0. Based on the
receding-horizon principle, a control law κsmpc for wind
farm power control can be defined implicitly as

κsmpc = C ′∗
k0
(xk0

, v̂, P ref; θ), (7)

with θ ∈ RNt comprising of σvi .

However, such an SMPC can be hard to implement in
practice, as sampling v̂i(t) directly from N (vi, σ

2
vi
) can

be impractical since σ2
vi

is time-varying and not known
a priori. The sample-based SMPC must thus rely on
v̂i(t) and sample from a distribution with Nt unknown
covariances σ2

v̂i
to approximate vi(t). Additionally, plant-

model mismatch and the fact that the SMPC samples
around v̂i(t) may result in an offset (Boersma et al.,
2019a). For offset free tracking, an offset term αe ∈ [0,∞]
can be used to modify (1) accordingly

e = P ref −
Nt∑
i=1

Pi + αe. (8)

Still, there is an open question on how to derive θ ∈ RNt+1

which comprises of σ2
v̂i

and αe such that the controller

meets the reference, where the choice of σ2
v̂i

influences the
output Pi through (7).

4. HETEROSCEDASTIC BAYESIAN OPTIMISATION
FOR SMPC TUNING USING CLOSED-LOOP DATA

Deployment of SMPC for active power control of wind
farms is challenging in practice, as it is non-trivial to
specify the Nt unknown covariances σ2

v̂i
and αe. The

search space is high dimensional and nonlinear and scales
with the number of turbines Nt. For example, a random
grid approach with 9 turbines for the max, min, and the
mean value results in 3Nt+1 combinations of parameters.
Exploring such a parameter space is impractical, mainly
due to the considerable computational cost of closed-loop
high-fidelity simulations with the sample-based SMPC
controller (Boersma et al., 2017). To this end, this section
introduces a heteroscedastic BO approach for systematic
and data-efficient selection of the parameters σ2

v̂i
and αe

using closed-loop data that can quantify the closed-loop
performance of the SMPC. For brevity, the identifier for
each turbine i has been omitted in this section.

4.1 Quantifying closed-loop performance

With the implicit control law (7), a closed-loop system can
be defined as

xk+1 = fhf
(
xk, κsmpc(xk, v̂k, P

ref
k ; θ), vk

)
, (9)

where fhf represents the dynamics of the wind farm, avail-
able through a high-fidelity simulator or experiment that

can be queried. A closed-loop trajectory of the wind farm
can be defined in terms of θ and some set of uncertain
variables W = {x0, v0, v1, . . . , vN−1} by recursively ap-
plying (9) N times to compute a closed-loop trajectory
with xk = κsmpc(xk−1, v̂k−1, P

ref
k−1; θ)

zcl(θ,W) = {θ,x0, v0, . . . ,xN−1, vN−1,xN}. (10)

BO relies on quantifying the closed-loop performance of
the SMPC, based on the controller parameters that are
tuned. A natural candidate for active power control is the
root-mean-square of the closed-loop power tracking error
with ecl as defined according to (8),

Jcl(zcl(θ,W)) = E

[√
1

N
|ecl|2

]
= E [ecl,rms] . (11)

This closed-loop performance measurement is inherently
noisy due to the uncertain wind speed measurements
v̂k and the mismatch between the high-fidelity simulator
fhf and the control-relevant model (2). The plant-model
mismatch is difficult to quantify in terms of noise, but v̂k
is propagated through (2a) with (7)

P̂cl(θ) =
πD2

8
v̂3κsmpc(x̂, v̂, P

ref; θ), (12)

which exhibits heteroscedastic properties as the variance
from (12) depends on the parameter space of θ. The residue
can be computed as the root-mean-square of (12) and the
actual closed-loop wind farm power output Pcl

ϵcl(zcl(θ,W)) =

√
1

N

∣∣∣P̂cl − Pcl

∣∣∣2. (13)

4.2 SMPC tuning using closed-loop performance data

The SMPC parameters θ = {σv̂, αe} can now be derived
by optimising (11)

θ∗ = argmin
θ

Jcl(zcl(θ,W)), (14)

with BO that uses a probabilistic surrogate model of
the closed-loop performance measure Jcl for exploring the
search space of θ (Shahriari et al., 2016). Generally, BO
can be applied to objectives that do not have a closed-loop
functional form, such as (14), by modeling the closed-loop
performance using GP regression

y = Jcl(zcl(θ,W)) + ϵcl ∼ GP(m(θ), k(θ, θ′)), (15)

where ϵcl ∼ N (0, σ2
ϵ ) is a zero-mean normal random vari-

able, and the GP is specified by its mean function m(θ)
and a positive-definite covariance function k(θ, θ′) (Ras-
mussen, 2005). The main idea with BO then is to utilise
the GP from (15) to compute the posterior distribution
of Jcl(zcl(θ,W)), which is used in an acquisition function
to quantify the trade-off between exploring new sets of θ
in the search space which BO has not considered yet and
exploiting current sets of θ. This exploration and exploita-
tion are based on the uncertainty description provided by
GP. The regular BO framework can be extended to include
heteroscedasticity when σϵ is not constant and varies as a
function of θ. This is achieved by letting σϵ be defined by
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Simulator

v

Ĉ ′

SMPC xk

v̂

Noise

θnext Jcl, eclBayesian
optimiser

1

Fig. 2. A schematic of the heteroscedastic BO approach
for auto-tuning the SMPC.

another GP to model the log of σϵ (Goldberg et al., 1998)

log(σϵ(θ)) ∼ GPϵ (0, (kϵ (θ, θ
′))) . (16)

A schematic of the heteroscedastic BO approach for auto-
tuning of SMPC is given in Fig. 2. Here, the noise block
is an unknown function for which the actual wind speed
is perturbed by noisy wind speed measurement v̂(t) ̸=
v(t). For every closed-loop simulation, BO tunes the
parameters θ of SMPC using closed-loop performance
data. BO continues to gather closed-loop data until the
optimal values θ∗ are found or the computational budget
has been reached.

5. SIMULATION STUDY

In this section, a nominal model predictive controller
(MPC) is compared to a stochastic model predictive con-
troller (SMPC), which is tuned using both homoscedas-
tic and heteroscedastic BO from closed-loop simulations.
In the simulations, (6) is used in both the MPC and
the SMPC for optimal control, except that the MPC
is initialised with (Ns, αe, σv̂i

) = (1, 0, 0), ∀i ∈ [1, Nt].
Additionally, although unrealistic, an MPC with perfect
knowledge of the wind speed v(t) is also included (v̂(t) =
v(t)). For BO, the heteroscedastic BO includes (16) to
model time-varying σϵ in the GP, which the nominal (ho-
moscedastic) BO omits as it assumes time-invariant σϵ.

5.1 Simulation environment and variables

A computer with an Intel(R) Core(TM) i7-9850H CPU
@ 2.60 GHz is used for this simulation study. The con-
troller and the simulations are handled in MATLAB with
YALMIP (Löfberg, 2004) and MOSEK (MOSEK, 2019)
as the solver for the predictive controller and WFSim
(Boersma et al., 2018) as the simulator of choice to test the
proposed method on. The resulting predictive controller is
tuned from closed-loop data from WFSim with BO using
Ax (Bakshy et al., 2018) and BoTorch (Balandat et al.,
2020) in Python.

Table 1. Wind farm layout constants

Symbol Value

Lx × Ly 1.9× 0.8 [km]

∆x×∆y 28× 38 [m]

D, zt 126.4, 90 [m]

∆t,N 1, 998 [s]

Nt 9 [-]

Every simulation is initialised with a fully developed wake.
This means that the flow has been simulated beforehand
with (C ′

i, γi) = (2, 0), where the value for C ′
i corresponds

to the Betz-optimal value. Initial free-stream wind speeds
are defined according to (U∞, V∞) = (12, 0) [m/s], where
U∞, V∞ are the boundary wind speeds in the x- and y-
direction, respectively. Further, site-dependent constants
relevant to the simulation setup can be found in Table 1,
where ∆t is chosen such that the Courant condition holds
(Courant et al., 1967), N is the simulation time, D is the
rotor diameter, zt is the hub-height of each turbine, ∆x,
∆y denotes the grid dimensions in x- and y-direction, and
Lx, Ly denotes the length in x-, y-direction.

The power reference to be met is defined in this study
through the greedy power P greedy, which is the time-
averaged power given (C ′

i, γi) = (2, 0). Following P greedy,
a reference P ref

k at each discrete step k can be defined

P ref
k = 0.9P greedy + 0.2P greedyδPk, (17)

where δPk follows a normalised automatic generation con-
trol (AGC) signal (Pilong, 2013) and P greedy = 34.4 [MW].
Given (17), the performance measure for the subsequent
simulation study will follow the root-mean-square of the
power tracking error; see (11).

This study assumes that the generated power output
Pi(t) and perturbed average rotor wind speed v̂i for
each of the turbine i in WFSim are measured directly,
where v̂i(t) ∼ N

(
vi +wsensor, σ

2
vi

)
, with wi,sensor ∼

N
(
0, σ2

i,sensor

)
being the uncertainty associated with each

turbine and σvi follows the magnitude of the wind speed

σvi
=

v2i
Kσ

, (18)

where Kσ is some constant. The idea behind an individual
sensor noise is that no sensors are the same, while (18) is
chosen in this simulation study to model the wind speed
uncertainty as noise with a constant covariance is non-
realistic.

The BO with both heteroscedastic and homoscedastic GPs
is set to run with a limited budget of 100 trials, as each
simulation is expensive. Each trial and BO method are im-
plemented with a Monte-Carlo-based batch noisy expected
improvement acquisition function. One parameter σv̂i

is
derived for each turbine i, which together with αe results in

Table 2. Controller constants

Symbol Value

Q,R 10−4,109 [-]

∆t,Np, τ 1, 10, 5 [s]

U [0.1, 2] [-]

Ns 20 [-]
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10 parameters, which are initialised to be zero. The SMPC
and MPC parameters are given in Table 2 unless stated
otherwise, where the initial system state is computed by
simulating WFSim once in open-loop given the configura-
tions in layoutSet_sowfa_9turb_apc_alm_turbl.

For clarification, Jcl (11) is used interchangeably with the
power tracking error erms in the subsequent analysis.

5.2 9-turbine case study

It can be interesting to start by investigating the noise
profile expected from wind farm control. As such, 150
closed-loop simulations are performed with the SMPC for
σv̂i

= 2, ∀i ∈ [1, Nt], while varying αe. Fig. 3 shows the
resulting residue plot of log(Jcl) where a blue line has been
included to clearly show the origin, while the red dots are
the residues. The figure shows a clear trend, where the
spread of the residue of log(Jcl) increases with αe. Such a
trend can also be established for σv̂i

, ∀i ∈ [1, Nt] but is
not shown here for brevity.

0 1 2 3 4 5
αe

−0.04

−0.02

0.00

0.02

0.04

lo
g(

J c
l) r

es
id

ue

Fig. 3. A plot showing the residue of the log of the
closed-loop performance measure Jcl against αe with
σv̂i

= 2, ∀i ∈ [1, Nt].

Now that heteroscedasticity has been investigated, a com-
parison between the convergence and the performance be-
tween a BO with a prior over the residue (heteroscedastic
BO) compared to a nominal BO (homoscedastic BO) in
terms of convergence, and performance is warranted. As
such, Fig. 4 shows the mean tracking error as Jcl plotted
against each BO iteration after restarting and applying
each method 5 times, which results in 5 different opti-
mal parameter configurations for each of the methods. As
shown in Fig. 4, the performance of the heteroscedastic BO
is, on average, higher than the homoscedastic BO, which
does not converge.

The results are verified with 50 closed-loop Monte-Carlo
simulations for each of the 5 different optimal parameter
configurations for each method for different realisations
of v̂(t) in Fig. 5, which shows the mean time profiles of
the combined wind turbines for an SMPC with derived
parameters θ from heteroscedastic BO as blue lines, an
SMPC with homoscedastic BO as red lines, an MPC where
measured wind speed v̂(t) is the same as the actual wind
speed v(t) as green lines, and an MPC where v̂(t) ̸= v(t) as
yellow lines. The MPC where v̂(t) = v(t) acts here as the
unrealistic benchmark with the MPC where v̂(t) ̸= v(t) as
the realistic case.

0 20 40 60 80 100
BO iteration

0.5

1.0

1.5

2.0

2.5

J c
l

BOhomo

BOhetero

Fig. 4. A plot showing the mean power tracking error as
Jcl against the current Bayesian optimisation trial.
The shaded areas are the average trajectories with
±1 standard deviation.

Fig. 5 shows that the SMPC with heteroscedastic BO and
homoscedastic BO achieves a comparable performance in
comparison with the benchmark MPC where v̂(t) = v(t),
where the former achieves better tracking between the
two. Some oscillations around the reference are expected.
In contrast, the realistic MPC where v̂(t) ̸= v(t) suffers
greatly in tracking performance, both due to plant-model
mismatch but also due to uncertainty in wind speed
measurement. These results can be confirmed by looking
at Table 3 which shows the mean tracking error erms for
each method with their standard deviation.

Table 3. Power tracking error mean and stan-
dard deviations

Method µ(erms) [MWH] σ(erms) [MWH]

SMPC + BOhomo 0.8602 0.0144

SMPC + BOhetero 0.7837 0.0129

MPC (v̂ = v) 0.5514 0.0000

MPC (v̂ ̸= v) 2.2389 0.0145

As expected, the mean µ and standard deviation σ of
erms is the lowest for when v is used directly in an MPC,
which in practice is unrealistic. The second best in terms
of erms is with the SMPC + BOhetero, with the SMPC
+ BOhomo lagging in terms of performance. Lastly, the

200 400 600 800
t [s]

22.5

25.0

27.5

30.0

32.5

35.0

37.5

40.0

P 
[M

W
]

SMPC+BOhomo

SMPC+BOhetero

MPC( ̂v= v)
MPC( ̂v≠ v)

Fig. 5. Time profiles of the total wind farm power output
mean for the different methods. The reference to be
followed is illustrated as black stipulated lines, and
the shaded areas are the average trajectories with ±1
standard deviation.
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nominal MPC using measured wind v̂ directly has the
highest erms. Numerically this means that an SMPC +
BOhetero approach yields on average a 64.99 % decrease in
erms compared to the realistic case with an MPC (v̂ ̸= v),
and an 8.89% decrease compared to an SMPC + BOhomo

approach. The increase in performance between SMPC +
BOhetero over SMPC + BOhomo is expected as the former
converges for the specified budget of 100 trials, whereas the
latter does not. This performance difference can also be
seen from Fig. 5 where the tracking performance of SMPC
+ BOhetero is on average better than the one from SMPC
+ BOhomo. The effect of applying heteroscedastic BO over
a nominal BO can especially be seen in Fig. 5 between 0 [s]
and 100 [s] where the plant-model mismatch is negligible
as the reference and ideal MPC (v̂ = v) are almost the
same. It can therefore be inferred that this area is mostly
affected by the heteroscedastic noise from uncertain wind
measurement, where using a heteroscedastic BO yield
increased performance.

6. CONCLUDING REMARKS

This study demonstrates how heteroscedastic BO can be
leveraged for increased wind farm power tracking per-
formance, given heteroscedasticity in wind power noise.
Results show an average decrease in tracking error by
8.89 % compared to one which relies on nominal BO
when used together with an SMPC and a reduction by
64.99 % compared to just a nominal MPC without BO
for a 9-turbine wind farm case study. Future work should
investigate other ways uncertainty can impact wind farm
control. For example, an economic formulation is generally
required in wind farms to meet the power demand while at
the same time minimise, for example, degradation factors.
Such applications call for multi-objective-based optimisa-
tion, which BO also readily offers.
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