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Abstract: This paper presents a robust model predictive control (MPC) approach for offset-
free tracking of piece-wise constant references in the presence of bounded deterministic and
stochastic disturbances. The system is considered to be linear with two sources of additive
bounded uncertainties on the states. The first uncertainty source accounts for unknown, deter-
ministic structural/parametric plant-model mismatch. The second uncertainty source represents
stochastic exogenous system disturbances. The proposed deterministic-stochastic robust MPC
approach uses estimates of the deterministic model uncertainties to modify the nominal state
and input targets. This allows for achieving offset-free tracking of the mean of the controlled
variables. A non-conservative constraint tightening procedure is used to handle probabilistic
state constraints and hard input constraints in the presence of stochastic uncertainties. The
computational complexity of the proposed robust MPC approach is comparable to that of
nominal MPC. The closed-loop performance of the proposed robust MPC approach is compared
to that of robust tube-based MPC and stochastic MPC in a simulation study.

Keywords: Model predictive control, Offset-free tracking, and Probabilistic/robust tubes

1. INTRODUCTION

The ability to systematically cope with multivariable sys-
tem dynamics, constraints, and conflicting control objec-
tives has made model predictive control (MPC) an attrac-
tive control approach in a wide range of engineering appli-
cations, ranging from path planning and robotics applica-
tions to complex process systems [Morari and Lee, 1999,
Mayne, 2014]. A key challenge in MPC arises from model
uncertainty (a.k.a. plant-model mismatch). Even though
MPC typically exhibits some degree of robustness to suffi-
ciently small model uncertainty due to its receding-horizon
implementation, marginal robust performance may not be
satisfactory in many practical applications. This consid-
eration has led to development of various (deterministic)
robust MPC and stochastic MPC approaches that gen-
erally aim to guarantee robust stability and performance
of the closed-loop system by, respectively, incorporating
deterministic and stochastic descriptions of system uncer-
tainties into the optimal control problem (e.g., see reviews
[Bemporad and Morari, 1999, Mesbah, 2016]).

This work addresses the MPC for linear systems with
mixed deterministic and bounded stochastic uncertainties.
The key notion of this work is to distinguish between
model uncertainty, which is generally deterministic, and
exogenous disturbances that are often of (bounded) prob-
abilistic nature in real systems. In practical control ap-
plications, control-oriented models are commonly derived
from high-fidelity (first-principles) models that cannot be
directly used in optimization-based control algorithms due
to computational considerations. High-fidelity models can

be used to characterize deterministic uncertainty bounds
for control-oriented models. Alternatively, system identifi-
cation methods can be used for characterizing the deter-
ministic model uncertainty (as well as stochastic distur-
bances) when control-oriented models are identified from
input-output data [Ljung, 1998].

This paper presents a robust MPC approach that can
systematically handle a mixture of bounded deterministic
and stochastic uncertainties. This will allow for MPC to
non-conservatively handle the original sources of system
uncertainties. Concepts from robust tube-based [Mayne
et al., 2005] and stochastic tube-based MPC [Kouvaritakis
et al., 2010] are used to derive a computationally tractable
MPC formulation, with computational complexity compa-
rable to that of nominal MPC. The estimates of (unknown)
plant-model mismatch are incorporated into the MPC
problem to ensure offset-free tracking of the mean of the
controlled variables. The closed-loop performance of the
proposed deterministic-stochastic robust MPC approach is
compared to that of a robust tube-based MPC approach
[Alvarado et al., 2007] and a stochastic MPC approach
[Lorenzen et al., 2015].

Notation. N denotes the set of positive integers and N0 =
{0} ∪ N. Given two sets X and Y such that X ⊂ Rn and
Y ⊂ Rn, the Minkowski set addition and the Pontryagin
set difference are defined by X ⊕ Y = {x+ y : x ∈ X, y ∈
Y } and X 	 Y = {x : x ⊕ Y ⊆ X}, respectively. The
positive (semi)definite matrix A is denoted by A > 0
(A ≥ 0). ‖x‖2A = x>Ax is the weighted 2-norm, ρ(A) is
the spectral radius, and (a, b) = [a>, b>]>.
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2. PROBLEM STATEMENT

Consider an uncertain system described by the discrete-
time, linear time-invariant representation

xk+1 = Axk +Buk + dk + wk, (1a)

yk = Cxk +Duk, (1b)

with states xk ∈ Rn, control inputs uk ∈ Rm, unknown
deterministic disturbances dk ∈ D ⊂ Rmd , stochastic
disturbances wk ∈ W ⊂ Rmw , and outputs yk ∈ Rp.
The matrices (A,B,C,D) and the convex, bounded sets D
and W are assumed known. It is assumed that wk for all
k ∈ N are independent realizations of a real-valued random
variable W , with realizations inside of W. Moreover, W is
assumed to have zero mean (without loss of generality)
and finite variance with a known distribution.

We briefly elaborate on the generality of the system model
(1). The deterministic disturbances dk represent struc-
tural/parametric plant-model mismatch (and possibly un-
measured persistent system disturbances). For example,
consider a system of the form xk+1 = (A+ Aδ)xk + (B +
Bδ)uk + wk, where the pair (Aδ, Bδ) denotes unknown
system perturbations. In this case, the input-output data
from the system can be used to infer the deterministic
disturbances given by dk = Aδxk + Bδuk, which is in
fact a systematic plant-model mismatch. Another example
is when the system dynamics are described by a (high-
fidelity) nonlinear model xk+1 = f(xk, uk) + wk, wherein
dk would be defined as f(xk, uk)−Axk−Buk. This implies
that the deterministic disturbance set D can generally
be obtained from either input-output system data, or
from a high-fidelity system model. On the other hand,
the stochastic disturbances wk represent the effect of ex-
ogenous disturbances acting on the system. In practical
control applications, the distribution of W is typically
estimated from input-output data using standard methods
(see [Ljung, 1998] for methods and further details).

The system (1) is subject to individual chance constraints
on the states and hard constraints on the inputs

P[h>j xk ≤ fj ] ≥ 1− εj , j = 1, . . . , r, k ∈ N0, (2a)

Guk ≤ g, k ∈ N0, (2b)

where P[v ∈ V ] is the probability of event v ∈ V , εj ∈ [0, 1]
is the allowed probability of constraint violation, and r is
the number of state constraints. The parameter h>j ∈ R1×n

denotes the jth row of H ∈ Rr×n, while fj is the jth
element of f ∈ Rr. Let X and U denote the collection of
state and input constraints, respectively.

Let sk ∈ Rp be an asymptotically constant reference
signal. The objective of this work is to design a recursively-
feasible robust MPC controller that stabilizes the true
system and steers the outputs to a neighborhood around
s∞ in the face of deterministic and stochastic disturbances
in (1). When the deterministic disturbances dk tend to
steady state d∞, the system outputs should track the
setpoint without offset.

Three key challenges will be addressed toward developing
a deterministic-stochastic framework for robust MPC: (i)
how to efficiently handle the constraints (2) so that they
are guaranteed to hold during closed-loop operation, (ii)
how to minimize the tracking error (a.k.a. offset) when dk
tends to a constant value d∞, and (iii) how to ensure the

feasibility of the MPC problem for all possible disturbance
realizations when the optimization is initially feasible.

3. PRELIMINARY RESULTS

This section summarizes the key results from the robust
and stochastic MPC literature used to solve the combined
deterministic-stochastic robust MPC problem.

3.1 Dual Mode Prediction Method

We aim to regulate the following nominal system, which
is obtained from (1) by neglecting dk and wk

zk+1 = Azk +Bvk, (3)

where zk ∈ Rn are the nominal states and vk ∈ Rm are the
nominal inputs. To counteract the effect of disturbances,
the control inputs uk are defined in terms of control actions
ck and a static feedback gain K, i.e.,

uk = Kxk + ck, (4)

where K is chosen such that Φ = A+BK is strictly stable
(ρ(Φ) < 1). Similarly, the nominal inputs are

vk = Kzk + ck. (5)

Let δk = dk+wk be the mixed deterministic and stochastic
disturbance variables that must lie in a bounded set ∆ =
D⊕W. Under the control laws (4) and (5), the uncertain
predictions of (1a) and the nominal predictions of (3)
evolve as follows

xi|k = zi|k + ei|k, (6a)

zi+1|k = Φzi|k +Bci|k, (6b)

ei+1|k = Φei|k + δi|k, (6c)

with initial conditions z0|k = xk and e0|k = 0 (i ∈ N0). The
free variables ci|k will be optimized online by the proposed
MPC method. We use a dual mode prediction method in
order to work with a finite number of decision variables.
Mode 1 treats ci|k, i = 0, . . . , N − 1 as decision variables,
while mode 2 sets ci|k = ūk −Kx̄k, i ≥ N for some finite
horizon N where (x̄k, ūk) denotes the desired steady state
of the nominal system defined next.

3.2 Target Calculation and Regulator

As disturbances dk and wk are unmeasured, the steady-
state condition is first defined with respect to the nominal
system (3), which at time k must satisfy

min ū>k R̄ūk, s.t.:

[
A− I B
C D

] [
x̄k
ūk

]
=

[
0
sk

]
. (7)

The target tracking problem (7) has a unique solution
whenever the following condition is satisfied

rank

[
A− I B
C D

]
= n+m

and p ≤ m, indicating that the matrix is full row rank
[Pannocchia and Rawlings, 2003]. Methods for modifying
the steady-state condition to achieve offset-free control
in the presence of disturbances are discussed later. Con-
straints are not directly accounted for in (7) as they are
handled in the regulator presented in the next section. The
solution of (7) can be parametrized as [Limón et al., 2008]

(x̄k, ūk) = Mθθk, sk = Nθθk, (8)

where θk ∈ Rnθ is a parameter vector that characterizes
the unique solution, and Mθ and Nθ are suitable matrices.
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3.3 Constraint Tightening Methods

Two methods for efficiently handling constraints (2) of-
fline are discussed in this section. The first method uses
the well-known deterministic tubes to ensure that (2)
holds with probability one. The second method uses a
combination of robust and probabilistic tubes to bound
the evolution of the mixed deterministic and stochastic
variable δ into the future.

Robust Tube of Trajectories. A simple, but conservative,
approach for dealing with constraints (2) is to use tubes
to bound the control error ei = (xi − zi) with dynamics
ei+1 = Φei + δi. When ρ(Φ) < 1, there exists a robust
positively invariant set E that satisfies

ΦE ⊕∆ ⊆ E. (9)

Note that e0 = (x0 − z0) ∈ E implies ei ∈ E, ∀i ≥ N ,
which leads to Proposition 1.

Proposition 1. [Mayne et al., 2005]. Suppose E ⊂ X,
KE ⊂ U, and the system states in (1) and (3) lie in X
and satisfy e0 = (x0 − z0) ∈ E. If the nominal states
and control inputs in (3) satisfy the tighter constraints
zi ∈ X	E and vi ∈ U	KE, respectively, then the states
xi and control inputs ui = K(xi−zi)+vi of the controlled
system (1) will satisfy the original constraints xi ∈ X and
ui ∈ U for all i ∈ N0 and for all disturbance realizations.

Using Proposition 1, it can be guaranteed that (2) will
hold for all future predictions (starting from the current
time k) whenever

zi|k ∈ X	 E, vi|k ∈ U	KE, i ∈ N0, (10)

for any xk ∈ z0|k ⊕ E. Clearly, this constraint tightening
method is conservative since constraints (2) are satisfied
for all possible realizations of stochastic disturbances wk.
The conservatism in constraint handling can be reduced by
accounting for the distribution of stochastic disturbances
and the admissible constraint violation probability εj .

Probabilistic Tubes. A method similar to that in [Kou-
varitakis et al., 2010] can also used for direct constraint
tightening. To this end, we first establish a worst-case
tightening for dk, followed by a probabilistic tightening
for wk. The necessary and sufficient conditions for fulfilling
the chance constraint (2a) are given below.

Proposition 2. At time k, predictions of (1) satisfy the
chance constraints (2a) if and only if the nominal system
(6) satisfies constraints

Hzi|k ≤ f − ηi, i ∈ N, (11)

with ηi = ηdi + ηwi , where the jth element of ηdi is the
maximum value of the expression

h>j (Φi−1dk + · · ·+ dk+i−1)

and the jth element of ηwi is the minimum η such that

P[h>j (Φi−1wk + · · ·+ wk+i−1) ≤ η] = 1− εj .

Proof: At any time k, the predicted error (6c) satisfies

ei|k = Φi−1δ0|k + · · ·+ δi−1|k, (12)

where e0|k = 0. Splitting ei|k = edi|k+ewi|k into deterministic

and stochastic error sources ed and ew, respectively, yields

edi|k = Φi−1dk + · · ·+ dk+i−1, (13a)

evi|k = Φi−1wk + · · ·+ wk+i−1. (13b)

Hence, (2a) implies h>j xi|k = h>j zi|k+h>j e
d
i|k+h>j e

w
i|k. From

the definitions of ηdi , ηwi , and (13), it directly follows that
(11) ensures P[h>j xi|k ≤ fj ] ≥ 1 − εj for all j = 1, . . . , r,
i ∈ N, and all disturbance realizations. �

By definition, ηdi is contained within the set H
⊕i

k=0 ΦkD.
Since ρ(Φ) < 1, it follows that the sequence of ηdi is
monotonically increasing and converges to limi→∞ ηdi =
η̄d ∈ HF∞, where F∞ =

⊕∞
i=0 ΦiD is the minimal robust

positively invariant (RPI) set. Existing methods can be
used for determining an RPI set that contains the minimal
RPI set in finite time (see, e.g., [Rakovic et al., 2005]).
Therefore, bounds on ηdi can be found offline and used in
the terminal set calculation as shown in the next section.

For any i ∈ N, the vector ηwi is the solution to r one-
dimensional linear chance constrained optimization prob-
lems. Exact computation requires calculation of the dis-
tribution function of h>j (Φi−1wk + · · · + wk+i−1), which
requires the evaluation of a multivariate convolution inte-
gral. As shown in [Lorenzen et al., 2015], an alternative
efficient approach for solving these programs is to use the
scenario approach, which has been used to solve chance
constrained MPC problems [Calafiore and Fagiano, 2013].
The key advantage of the scenario approach is that specific
guarantees on the probability of constraint violation can be
provided by taking a sufficiently large number of samples
from W .

Bounds on ηwi can be derived using Chebyshev’s inequality.

Corollary 1. [Kouvaritakis et al., 2010]. Let ηwi,j denote
the jth element of ηwi . For every i ∈ N, ηwi,j satisfies

ηwi,j ≤ κ(h>j Pihj)
1/2, κ2 = (1− εj)/εj , (14)

where Pi+1 = ΦPiΦ + E[WW>] with P1 = E[WW>].

Although the input constraints (2b) can be tightened to
ensure robust satisfaction, it would be less conservative
to perform stochastic constraints tightening on (2b) in a
similar manner to the state constraints [Lorenzen et al.,
2015]. This is due to the fact that the optimal inputs are
recomputed at every k and are adapted to account for the
(observed) disturbance realizations. These probabilistic
constraints are only enforced on the future predictions
of the inputs while hard input constraints will still be
guaranteed by the MPC controller since uk = v0|k ∈ U
as a result of xk being known exactly.

Let εu ∈ [0, 1]. Similar to the state constraint tightening
in Proposition 2, we can replace (2b) with

Gvi|k ≤ g − µi, i ∈ N0, (15)

where µi = µdi + µwi and µdi , µ
w
i are defined similarly to

ηdi , ηwi using the rows of G, elements of g, and the allowed
constraint violation probability εu. Note that µ0 = 0 as a
result of e0|k = 0 for every k ∈ N0.

4. DETERMINISTIC-STOCHASTIC ROBUST MPC
FOR OFFSET-FREE TRACKING

This section presents a computationally tractable ap-
proach for the robust MPC for the linear system (1)
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with mixed deterministic and stochastic uncertainty. The
control cost function is defined by

JN =

N−1∑
i=0

‖zi|k − x̃k‖2Q + ‖vi|k − ũk‖2R (16)

+ ‖zN |k − x̃k‖2P + ‖x̄k − x̃k‖2T ,
where Q ≥ 0 is the state penalty matrix, R > 0 is the input
penalty matrix, P > 0 is the terminal penalty matrix, and
(x̃k, ũk) is an artificial steady state introduced to ensure
feasibility of the optimization problem with respect to any
setpoint sk. The term ‖x̄k − x̃k‖2T is incorporated into the
cost function to penalize deviations between the desired
steady state x̄k and the artificial steady state x̃k for some
weight matrix T > 0 [Alvarado et al., 2007].

At every sampling time k with a given θk = Nθsk and
measured states xk, the proposed robust MPC approach
involves solving the optimal control problem (OCP)

min
ck.θ̃k

JN (ck, θ̃k;xk, θk) (17a)

s.t.: (x̃k, ũk) = Mθ θ̃k, (17b)

z0|k = xk, (17c)

zi+1|k = Azi|k +Bvi|k, i = 0, . . . , N − 1, (17d)

vi|k = Kzi|k + ci|k, i = 0, . . . , N − 1, (17e)

zi|k ∈ Zi, vi|k ∈ Vi, i = 0, . . . , N − 1, (17f)

(zN |k, θ̃k) ∈ Zef , (17g)

where ck = (c0|k, c1|k, · · · , cN−1|k), Zi and Vi are tight-
ened constraint sets, and Zef is a terminal constraint set
for the tracking problem. The MPC control law applied to
(1) at time k is defined by

uk = Kxk + c?0|k(xk, θk), (18)

where c?0|k is the first element of the optimal control policy

c?k obtained by solving (17)

The OCP (17) is a convex quadratic program (QP) that
can be solved efficiently to global optimality using stan-
dard optimization methods. Note that the controller is
almost as simple to solve as a nominal MPC controller
since the constraint tightening is done completely offline.
The constraint tightening will be least conservative when
the full uncertainty descriptions are taken into account.

Next, we discuss how the methods introduced in Section 3
can be used to select Zi and Vi to ensure closed-loop
satisfaction of constraints (2) and recursively feasibility
of (17) as well as how to modify the target sk to ensure
offset-free control with respect to the mean of the system.

4.1 Infinite Cost

Using the dual mode scheme (6), the weight matrix P can
be selected to represent exactly an infinite cost function.
Combining (6) with the target calculator (7) results in
vi|k − ũk = K(zi|k − x̃k) and zi+1|k − x̃k = A(zi|k − x̃k) +
B(vi|k − ũk) for all i ≥ N . The infinite tail of the cost
function can then be computed as

∞∑
i=N

‖zi|k − x̃k‖2Q+K>RK = ‖zN |k − x̃k‖2P ,

where P > 0 is the solution to P −Φ>PΦ = Q+K>RK.

4.2 State and Input Constraint Tightening

The sets Zi and Vi can be computed using either robust
tubes or probabilistic tubes (or a combination of them), as
presented in Section 3. For example, the input constraint
tightening can be done using the robust tubes while the
state constraint tightening can be done using the combined
robust-probabilistic tube method described in Proposition
2.

Robust tubes (10) yield constraints that are independent
of the index i, which represents the number of steps
predicted into the future from the current time k. In
other words, Zi = X 	 E and Vi = U 	 KE for all
i ∈ N. On the other hand, probabilistic tubes (11) and
(15) are less conservative, but are a function of the future
steps predicted i wherein Zi = {z : Hz ≤ f − ηi} and
Vi = {v : Gv ≤ g−µi}. Note, however, that these sets can
be computed exactly offline for i = 0, . . . , N − 1.

4.3 Terminal Constraint Set

The terminal constraint set Zef is used to ensure that
the state and input constraints are satisfied over the
infinite prediction horizon using the dual mode prediction
paradigm in (6). Constraints are invoked explicitly in mode
1, while they are enforced implicitly in mode 2 using Zef .

In mode 2, constraints (11) and (15) can be written as

zN+j|k ∈ ZN+j , vN+j|k ∈ VN+j , j ∈ N0, (19)

where

zN+j|k = x̃k + Φj(zN |k − x̃k),

vN+j|k = ũk +KΦj(zN |k − x̃k).

Clearly, the future predicted system behavior in mode 2 is
only a function of zN |k and θ̃k, so that we can define the

maximal admissible set Ze∞ as the set of all (zN |k, θ̃k) such
that (19) holds for all future steps j ∈ N0.

When using robust tubes, the computation of Ze∞ can
be simplified by defining an invariant set for tracking
by taking advantage of the fact that the constraints are
independent of future time index j [Limón et al., 2008].

When using probabilistic tubes for fulfilling (19), however,
there are an infinite number of time-dependent constraints
that define Ze∞. In this case, an inner approximation of Ze∞
can be defined by replacing ηN+j and µN+j by bounds

η̄ and µ̄ beyond a finite horizon j = N̂ [Kouvaritakis
et al., 2010]. The bounds η̄ and µ̄ can be straightforwardly
derived using the methods discussed in Section 3. This
leads to a set Ze

N̂
⊂ Ze∞. Even though the set Ze

N̂
is defined

by an infinite number of inequalities, only the first N̂+N?

inequalities are needed to construct Ze
N̂

provided that N?

is sufficiently large [Gilbert and Tan, 1991]. The smallest
allowable N? can be found offline by solving a sequence
of linear programs. Hence, setting Zef = Ze

N̂
guarantees

satisfaction of state and input constraints in mode 2.

4.4 Offset-Free Tracking through Disturbance Estimation

If the uncertainty dk tends to a steady-state value d∞,
the output of the closed-loop system, under the control
law (4), will be offset from the desired asymptotic setpoint
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s∞. Due to persistent excitation of stochastic disturbances,
the closed-loop system cannot converge asymptotically
to any point. However, the offset with respect to the
average/mean value of (1) can be eliminated so that the
system “oscillates” with bounded variance around s∞.

Proposition 3. Assume that the deterministic disturbances
dk and reference sk are asymptotically constant, ρ(Φ) < 1
with K being the optimal control law for unconstrained
MPC, and the target calculator (7) has a unique solution
for all sk. Assume that the OCP (17) is unconstrained for
all future t ≥ j for some finite j ∈ N0 and the mean of the
closed-loop system is convergent. Then my

∞ = s∞ + (C +
DK)(I − Φ)−1d∞, where my

k = E[yk] is the mean of the
output at time k.

Proof: Let mx
k = E[xk] and mu

k = E[uk] denote the mean
of the closed-loop states and inputs at time k, respectively.
The converged mean of (1) must satisfy

mx
∞ = Amx

∞ +Bmu
∞ + d∞, my

∞ = Cmx
∞ +Dmu

∞.

The converged target calculator must satisfy

x̄∞ = Ax̄∞ +Bū∞, s∞ = Cx̄∞ +Dū∞.

When (17) is unconstrained, the input is equal to uk =
ūk +K(xk− x̄k), where K is the static feedback gain. The
mean of the converged closed-loop input must then satisfy
mu
∞ = ū∞+K(mx

∞− x̄∞). Subtracting the mean from the
target and substituting the control input results in

mx
∞ − x̄∞ = Φ(mx

∞ − x̄∞) + d∞,

my
∞ − s∞ = (C +DK)(mx

∞ − x̄∞).

Solving for (mx
∞ − x̄∞) and substituting into the latter

equation directly proves the claim. �

Proposition 3 provides an explicit expression for the offset
in the mean value of the outputs. The setpoint sk in the
nominal tracking problem (7) can now be modified to
asymptotically eliminate this offset. Let sdesk be the desired
setpoint for the system. Define

sk = sdesk − (C +DK)(I − Φ)−1d̂k, (20)

where d̂k is an estimate of the disturbances at current time
k that can be calculated by[

x̂k+1

d̂k+1

]
=

[
A I
0 I

] [
x̂k
d̂k

]
+

[
B
0

]
uk +

[
Lx
Ld

]
(xk − x̂k), (21)

or using a simpler filter of the form

d̂k = λf d̂k−1 + (1− λf ) (xk −Axk−1 −Buk−1) . (22)

There exist observer gains Lx and Ld such that the esti-
mator (21) converges (in the mean) when the augmented
system satisfies standard observability conditions [Pannoc-
chia and Rawlings, 2003, Maeder et al., 2009]. The gains
Lx and Ld can be designed optimally using a Kalman filter,

whereas the simple filter (22) ensures that the mean E[d̂k]
converges to d∞ at a rate fixed by filter coefficient λf .

4.5 Recursive Feasibility

The existence of a solution c?k to the OCP (17) at any
time k ensures that the state and input constraints are
satisfied in the future with a certain probability, but not
for all possible realizations of disturbances (unless the
robust tubes (10) are used to enforce constraints or εj
is set to zero in (2a)). It is known that the probability
of constraint violation j steps ahead into the future at

time k is not the same as that in j − 1 steps into the
future at time k + 1 due to the realization of states
xk+1 (that is unknown at time k). To address this issue,
probabilistic tubes that are recursively feasible have been
proposed in [Kouvaritakis et al., 2010]. The key idea is
to further tighten the constraint back-off parameters ηi
and µi based on the fact that the states will be realized
in the future. This approach can be used to modify the
tightened state and input constraint sets Zi and Vi to
guarantee recursive feasibility of the OCP (17). Readers
are referred to Theorem 3 of [Kouvaritakis et al., 2010]
for explicit expressions for the back-off parameters, and
the subsequent bounds on these parameters which can be
used when defining the terminal set Zef .

5. NUMERICAL EXAMPLE

We demonstrate the advantages of separately accounting
for the plant-model mismatch and stochastic exogenous
disturbances in MPC using our proposed method. The
example system is based on the DC-DC converter taken
from [Cannon et al., 2011, Lorenzen et al., 2015]. The
system has the form (1) with

A =

[
0.98 0.0075
−0.143 0.976

]
, B =

[
4.778
0.115

]
, C = [0 1] , D = 0,

where dk is a plant-model mismatch term exactly given by

dk =

[
0.02 0

0 0.02

]
xk +

[
0.02

0

]
uk +

[
1
1

]
pk.

The first two terms represent mismatch in the A and B
matrices while pk is an unknown persistent disturbance

pk =

{
0, k < 5,

0.1, k ≥ 5.

The expression for dk is unknown to the controller, how-
ever, it can be bounded in a set D based on comparisons
of the model to data. The distribution of the stochastic
disturbance wk is assumed to be a Gaussian distribution
with covariance 0.2I truncated at W = {w : ‖w‖∞ ≤ 0.1}.
The weights in the MPC cost function are Q = diag(1, 10)
and R = 1, and the prediction horizon is N = 5. The
gain K is chosen to be the solution to the unconstrained
linear quadratic regulator (LQR). The initial state in all
simulations was chosen to be x0 = [2.5, 2.8]>.

Two individual state chance constraints of the form (2a)
are considered

P[x1,k ≤ 2] ≥ 0.8, P[x2,k ≤ 3] ≥ 0.8.

The hard input constraints are given by

U = {u : ‖u‖∞ ≤ 0.8}.
The performance of the proposed robust MPC approach
(the OCP (17) with Proposition 2 used to tighten the
state chance constraints) was evaluated by a Monte Carlo
simulation using 100 realizations. Simulation results for
the closed-loop system are shown in Fig. 1. We observed
0% constraint violation in the first few steps due to
minimal mismatch between the true plant and the model.
After the persistent disturbance kicks in at step 5, an
average of 12% constraint violation is observed over the
next few steps. This is reasonably close to the maximum
allowed constraint violation level 20%, suggesting minimal
conservatism of the proposed robust MPC approach. This
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Fig. 1. Comparison of closed-loop system responses for
various MPC approaches under 100 uncertainty re-
alizations (x1 and x2 denote the system states).

is due to the fact that the constraints were tightened using
knowledge of the distribution of wk. Since there is one
control input in the system, only one output can be tracked
without offset due to the rank condition of the target
calculator (7). Using the setpoint update rule (20), we are
able to ensure the mean of the output y = x2 converges to
the origin as desired.

For comparison, we provide closed-loop simulation results
using a robust tube-based MPC approach for tracking
[Alvarado et al., 2007] and a stochastic MPC approach
[Lorenzen et al., 2015] (see Fig. 1). As expected, the
robust MPC approach ensures 0% constraint violation at
all times, which makes the results more conservative than
that of the proposed approach. On the other hand, the
stochastic MPC approach does not account for the plant-
model mismatch, resulting in an average of 95% constraint
violation in the first 8 steps. Also, the stochastic MPC
approach does not update the target setpoint resulting in
offset in the mean of the output at steady state.

6. CONCLUSIONS AND FUTURE WORK

This paper presents a robust MPC approach for offset-free
tracking of linear systems in the presence of bounded de-
terministic and stochastic disturbances. The deterministic
disturbance accounts for structural/parameter mismatch
between the plant and model while the stochastic distur-
bance represents exogenous disturbances that vary ran-
domly with some known distribution. Probabilistic/robust
constraint satisfaction is guaranteed by tightening the
constraints offline using well-known tube methods, while
offset-free behavior is ensured using a disturbance estima-
tor.

Future work will involve exploring new methods for en-
suring stability and feasibility. An example is provided in
[Lorenzen et al., 2015] wherein a first-step constraint is
added to ensure recursively feasibility, which leads to an
increase in the domain of attraction of the MPC problem.
Performance and constraint satisfaction can be improved
by optimizing the feedback gain online. An affine dis-
turbance feedback parametrization [Goulart et al., 2006]
would ensure the MPC problem remains convex.

Future work should also be done on demonstrating the
flexibility and usefulness of the new mixed deterministic-
stochastic system description. This includes illustrating
how the disturbance sets D and W and the distribution of
W can be approximated from data for real-life systems, as
well as showing improvements in closed-loop performance
from treating these two uncertainty sources separately.

REFERENCES

I. Alvarado, D. Limón, T. Alamo, M. Fiacchini, and
E. Camacho. Robust tube based MPC for tracking
of piece-wise constant references. In Proceedings of the
IEEE Conference on Decision and Control, pages 1820–
1825, New Orleans, LA, USA, 2007.

A. Bemporad and M. Morari. Robust model predictive
control: A survey. In Robustness in Identification and
Control, pages 207–226, Springer, Berlin, 1999.

G. C. Calafiore and L. Fagiano. Robust model predictive
control via scenario optimization. IEEE Transactions
on Automatic Control, 58:219–224, 2013.

M. Cannon, B. Kouvaritakis, S. V. Rakovic, and Q. Cheng.
Stochastic tubes in model predictive control with prob-
abilistic constraints. IEEE Transactions on Automatic
Control, 56:194–200, 2011.

E. G. Gilbert and K. T. Tan. Linear systems with state
and control constraints: The theory and application of
maximal output admissible sets. IEEE Transactions on
Automatic control, 36:1008–1020, 1991.

P. J. Goulart, E. C. Kerrigan, and J. M. Maciejowski.
Optimization over state feedback policies for robust
control with constraints. Automatica, 42:523–533, 2006.

B. Kouvaritakis, M. Cannon, S. V. Raković, and Q. Cheng.
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