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Approximate Closed-Loop Robust Model
Predictive Control With Guaranteed Stability

and Constraint Satisfaction
Joel A. Paulson and Ali Mesbah , Senior Member, IEEE

Abstract—The real-time implementation of closed-loop
robust model predictive control (MPC) schemes is an
important challenge for fast systems, as their solution com-
plexity depends strongly on the system size, control policy
parametrization, and prediction horizon. We look to address
this problem by approximating the implicitly-defined MPC
controller using deep learning. Although the resulting neu-
ral network approximation has a small memory footprint
and can be efficiently computed, it does not guarantee
robust constraint satisfaction or stability. We propose a
novel projection-based strategy that is capable of providing
a certificate of robust feasibility and input-to-state stabil-
ity in real-time. We also show how this projection operator
can be formulated as a parametric quadratic program that is
solvable offline. The advantages of the proposed approach
are demonstrated on a benchmark case study.

Index Terms—Robust model predictive control, deep
neural networks, input-to-state stability, safe invariant sets.

I. INTRODUCTION

MODEL predictive control (MPC) is a popular
optimization-based strategy for control of constrained

multivariable systems [1]. Emerging MPC applications, how-
ever, present unique challenges for the design of controllers
with low enough computational and memory requirements for
deployment in embedded systems [2]. These challenges can
be significantly compounded when deploying robust/stochastic
MPC formulations that explicitly account for some form of
system uncertainty [3], [4].

There has been significant work on so-called “fast MPC”,
which broadly includes development of: (i) fast solvers and
tailored numerical implementations [5], and (ii) explicit MPC
laws that are computed offline as a function of all feasible

Manuscript received December 10, 2019; revised February 9, 2020;
accepted March 1, 2020. Date of publication March 12, 2020; date of
current version May 25, 2020. Recommended by Senior Editor M. Guay.
(Corresponding author: Ali Mesbah.)

Joel A. Paulson is with the Department of Chemical and Biomolecular
Engineering, The Ohio State University, Columbus, OH 43210 USA
(e-mail: paulson.82@osu.edu).

Ali Mesbah is with the Department of Chemical and Biomolecular
Engineering, University of California at Berkeley, Berkeley, CA 94720
USA (e-mail: mesbah@berkeley.edu).

Digital Object Identifier 10.1109/LCSYS.2020.2980479

states [6]. Explicit MPC leverages the fact that, for linear time-
invariant systems with quadratic costs, the MPC problem can
be cast as a parametric quadratic program whose solution is a
piecewise affine function defined on polytopes [6]. One impor-
tant drawback of explicit MPC, however, is that the number
of polytopic regions can grow exponentially with the number
of constraints, which is further exacerbated in explicit robust
MPC laws (e.g., [7], [8]).

Recently, there has been increasing interest in approxi-
mate MPC approaches, which aim to determine an explicit,
cheap-to-evaluate representation of the controller using data
generated from the offline solution of a MPC problem.
Various function approximation schemes for deriving approx-
imate MPC laws have been investigated including poly-
nomials [9], radial basis functions [10], and deep neural
networks [11]–[13]. These approaches generally result in
good closed-loop performance; however, approximate MPC
laws typically cannot by design guarantee closed-loop stabil-
ity and feasibility. This remains a largely open challenge in
approximate MPC, especially for uncertain systems.

This letter addresses the problem of guaranteeing closed-
loop stability and feasibility of approximate robust MPC for
linear systems subject to additive uncertainty. In particular, we
look to approximate closed-loop robust MPC laws that seek to
optimize over a class of control policies, as opposed to open-
loop control inputs, in order to improve performance often at
the expense of a significant increase in online computational
cost. We use deep neural networks (DNNs) to approximate
the expensive-to-evaluate closed-loop robust MPC law. This
choice is motivated by several recent works that demon-
strate particular advantages of DNNs in approximate MPC
including their broad applicability as a consequence of the
universal function approximation theorem [14], their ability
to be stored and evaluated efficiently on low-cost embedded
systems [12], and their ability to scale to problems with a large
state dimension [15].

One promising approach for ensuring feasibility in DNN-
based controllers is to project the output of the DNN into an
appropriately defined invariant set, as recently discussed for
deterministic linear systems in [11]. The main contribution
of this letter is to propose a novel projection operator that
can guarantee robust constraint satisfaction and input-to-state
stability of DNN-approximated closed-loop robust MPC laws
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in real-time. Furthermore, we demonstrate how this projection
operator can be formulated as a parametric quadratic program-
ming problem using variable lifting techniques such that an
exact explicit solution can be obtained offline. The advan-
tages of the proposed projected DNN control laws in terms
of a substantially reduced online cost and memory footprint
are demonstrated in a benchmark problem.

Notation: The sets of non-negative and positive integers and
non-negative reals are denoted by N, N+, and R+, respectively.
Given a, b ∈ N such that a < b, we denote N[a,b] := {a, a +
1, . . . , b}. We let ‖ · ‖ represent an arbitrary Hölder p-norm
and Br := {x : ‖x‖ ≤ r} denote a p-ball of radius r ∈ R+.
Given a set X and a real matrix M of compatible dimensions
(possibly a scalar), the image and the preimage of X under M
are denoted by MX := {Mx : x ∈ X} and M−1X := {x : Mx ∈
X}, respectively. A set X ⊂ R

n is a C-set if it is compact,
convex, and contains the origin in its interior. Given a C-set
X ⊂ R

n, the function �X(x) := inf{μ : x ∈ μX, μ ≥ 0}
is called the Minkowski function. A function ϕ : R+ → R+
belongs to class K if it is continuous, strictly increasing, and
ϕ(0) = 0. A function β : R+ × R+ → R+ belongs to class
KL if for each fixed k ∈ R+, β(·, k) ∈ K and for each fixed
s ∈ R+, β(s, ·) is non-increasing and limk→∞ β(s, k) = 0.

II. PROBLEM STATMENT

Consider a discrete-time, linear time-invariant system with
an additive source of uncertainty

x+ = Ax+ Bu+ w, (1)

where x ∈ R
n is the state at the current time instant, x+ is the

state at the next time instant, u ∈ R
m is the control input, and

w is the bounded disturbance. The system is subject to hard
constraints

(x, u, w) ∈ X × U ×W . (2)

Assumption 1: The sets X , U , and W are polytopic C-sets
in R

n, Rm, and R
n, respectively.

The objective of this letter is to design a controller that:
(i) ensures the closed-loop system satisfies constraints for all
times and for all possible disturbance sequences, (ii) guar-
antees robust stability of the origin, (iii) minimizes some
specified cost function under uncertainty, and (iv) ensures the
controller is implementable on resource-limited hardware for
systems with fast sampling times. To achieve these objectives,
we focus on closed-loop robust MPC methods that can mit-
igate conservative control performance by optimizing over a
class of control policies. However, these robust MPC methods
often lead to expensive-to-evaluate optimization problems that
do not meet the fourth requirement above.

Let κrmpc : Xrmpc → U denote the “ideal” control law
that is implicitly defined as the solution to some closed-loop
robust MPC scheme with domain of attraction Xrmpc ⊆ X . It
is assumed that a multiparametric solution for κrmpc(·) either
cannot readily be obtained (e.g., due to nonlinear terms in the
objective) or that it is too expensive to deploy on resource-
limited hardware. Instead, we look to learn a more efficient
representation of the control law using function approxima-
tion techniques. We focus on deep neural network (DNN)

approximations of the form

N (x; p) = αL ◦ βL−1 ◦ αL−1 ◦ · · · ◦ β0 ◦ α0(x), (3)

where L is the number of hidden layers, α0(x) = W0x+b0 is an
affine transformation of the input, αl(ξl−1) = Wlξl−1+bl (with
ξl ∈ R

M and M denotes the number of nodes per hidden layer)
are affine transformations of the hidden layers for l ∈ N[1,L],
βl denotes the nonlinear activation functions (often chosen to
be hyperbolic tangent functions or rectified linear units) for
l ∈ N[0,L−1], and p = {W0, b0, . . . , WL, bL} are the collection
of all unknown parameters in the network.

For a fixed network structure, the best approximation of
κrmpc can be defined as the one that minimizes some loss
function (e.g., mean squared error) of a given training data
set. The training data can be generated offline by sampling
the feasible states xi ∈ Xrmpc and evaluating the control law
κrmpc(xi) for all i ∈ N[1,Ns]. The approximated robust MPC
control law is then given by

κdnn(x) = N (x; p�) ≈ κrmpc(x), (4)

where p� denotes the optimal network parameters. Unless the
approximation error

‖κrmpc(x)− κdnn(x)‖ ≤ εapprox, ∀x ∈ Xrmpc, (5)

is systematically accounted for in the original robust MPC for-
mulation, closed-loop guarantees may be lost whenever κrmpc
is replaced by κdnn. This letter looks to address this problem
for uncertain systems of the form (1). We propose to project
the outputs of the DNN-based approximation to the closed-
loop robust MPC law into an appropriately defined invariant
set that also enforces a stability condition for the origin by
design (i.e., for all possible εapprox). The proposed projection,
along with its relevant theoretical properties, are discussed in
the next section. Since the proposed projection can be formu-
lated as a relatively small quadratic program, we demonstrate
how an explicit solution to this optimization can be derived
offline in Section IV.

Remark 1: Although we focus on approximations of the
form (3), the approach proposed in this letter is applicable
to other approximate MPC methods.

III. ROBUST FEASIBILITY AND STABILITY OF DEEP

NEURAL NETWORK CONTROL LAWS

We can impose additional constraints on the approximated
control law κdnn by projecting it into a suitably chosen set. For
a given set S ⊂ R

n, we can formulate the projection operator
as the solution to the optimization problem

κ(x,S) = argmin{‖u− κdnn(x)‖ : u ∈ S}. (6)

This projection thus defines a family of control laws that are
parametrized by the set S , which can potentially vary with
time. In this section, we look to analyze the properties of the
nonlinear closed-loop system

x+ = Ax+ Bκ(x,S)+ w, (7)

under different choices of S . In particular, we aim to select S
such that certain robust feasibility and stability properties for
system (7) can be guaranteed in real-time.
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A. Real-Time Guaranteed Robust Constraint Satisfaction

We first recall a few standard definitions from set invariance
theory [16].

Definition 1: A set 
 is robust control invariant (RCI) for
system x+ = f (x, u, w) and constraint set (X ,U ,W) if 
 ⊆ X
and if, for all x ∈ 
, there exists a u ∈ U such that f (x, u, w) ∈

 for all w ∈W .

Definition 2: A set 
 is robust positively invariant (RPI)
for system x+ = f (x, w) and constraint set (X ,W) if 
 ⊆ X
and if, for all x ∈ 
, f (x, w) ∈ 
 for all w ∈W .

Using these definitions, we can now establish the following
important result.

Theorem 1: Let C be an RCI set for system (1)
and constraint set (2). For each x ∈ C, define the
set-valued map

Cu(x) = {u ∈ U : Ax+ Bu+ w ∈ C,∀w ∈W}. (8)

Then, for any initial condition x ∈ C, the system (1) in
closed-loop with the projected DNN-approximated controller
κfnn(x) := κ(x, Cu(x)) satisfies the constraints (2) for all times
and all possible disturbances.

Proof: Since C is an RCI set, the optimization (6) must be
recursively feasible for any x ∈ C. By definition, any control
law ν : C → U that selects values from Cu(x), i.e., ν(x) ∈
Cu(x), ∀x ∈ C guarantees that C is an RPI set for the system
x+ = Ax+ Bν(x)+ w and constraint set (Xν,U) where Xν =
X ∩{x : ν(x) ∈ U} ⊆ X . Since the projection (6) enforces this
condition, the assertion must hold.

Generally, there are an infinite number of RCI sets for a
given system. Since we want the control law (6) to have
as large a region of attraction as possible, our attention is
restricted to the maximal RCI set contained in X , denoted
by Cmax. By definition, Xrmpc ⊆ Cmax, meaning the projec-
tion does not eliminate any feasible solutions of the original
controller when Cmax is used in Theorem 1. This set can be
computed as the limit of the recursion

Ci+1 = Pre(Ci) ∩ X , C0 = X , (9)

where Pre(
) = {x | ∃u ∈ U : Ax + Bu + w ∈ 
,∀w ∈ W}
denotes the predecessor set. If and only if Ci�+1 = Ci� for some
i� ∈ N+, then Cmax = Ci� . Although (9) is not guaranteed to
converge in finite-time, a variety of methods exist for finding
invariant inner approximations of Cmax. In addition, evalua-
tion of the mapping Pre(
) can be done with readily available
computational geometry packages such as MPT3 [17]. Even
though these types of set operations have been tradition-
ally limited to problems of relatively small dimension, recent
work discusses ways that these approaches can be scaled to
much larger dimensional problems using ideas from linear
programming [18].

Theorem 1 addresses feasibility of the projection operator;
however, feasibility does not imply stability. If the feasible
set C is bounded, then one can think of the system (7) as
being stable in a weak Lyapunov sense. However, one is often
interested in obtaining stronger stability guarantees, which is
discussed in more detail next.

B. Real-Time Guaranteed Input-to-State Stability (ISS)

Whenever the disturbance is non-zero, it is not possible to
guarantee asymptotic stability of the origin. Instead, we take
advantage of the notion of input-to-state stability (ISS) [19]
that can be defined for system (7) as follows.

Definition 3: Let 
 be a subset of R
n containing the ori-

gin in its interior and let φ(k, x, w0:k−1) denote the solution
to (7) at time k for a given state x at time 0 and dis-
turbance sequence w0:k−1 = {w0, . . . , wk−1}. We call the
system (7) ISS in 
 if there exists a KL -function β(·, ·)
and a K -function γ (·) such that for all x ∈ 
 and all
{wj ∈ W}j∈N+ , the corresponding state trajectories satisfy
‖φ(k, x, w0:k−1)‖ ≤ β(‖x‖, k)+ γ (‖w0:k−1‖), ∀k ∈ N.

We leverage the following result that establishes conditions
under which ISS can be guaranteed.

Lemma 1 [19]: Let 
 be an RPI set for the system (7)
and constraint set (2) that contains the origin in its interior.
Furthermore, let there exist K -functions α1(·), α2(·), α3(·),
σ(·) and a continuous function V : Rn → R+ such that

α1(‖x‖) ≤ V(x) ≤ α2(‖x‖), (10a)

V(x+)− V(x) ≤ −α3(‖x‖)+ σ(‖w‖), (10b)

for all x ∈ 
, w ∈ W , and x+ = Ax + Bκ(x,S) + w. Then,
the system (7) is ISS in 
.

A function V(·) that satisfies the hypothesis of Lemma 1 is
called an ISS-Lyapunov function.

To ensure the control law (6) induces some ISS-Lyapunov
function for the closed-loop system (7), we rely on a particular
type of invariant set, as defined next (see [16]).

Definition 4: Given a scalar λ ∈ [0, 1), a C-set 
 is a
λ-contractive set for the system x+ = Ax+ Bu and constraint
set (X ,U) if 
 ⊆ X and if, for all x ∈ 
, there exists a u ∈ U
such that Ax+ Bu ∈ λ
.

Roughly speaking, a set L is λ-contractive if all states in
L can be driven into a tighter region λL by applying a one-
step control input in the absence of disturbances. Note that a
procedure similar to (9) can be used to derive the maximal
λ-contractive set (see [20] for further details). Thus, this will
be our vehicle for enforcing a contractive constraint in the
proposed projection problem. We first provide some useful
results concerning the Minkowski functions of C-sets.

Lemma 2 [21]: Let X and Y be C-sets in R
n such that

Y ⊆ X. Then, (i) �X(x) ≤ �Y(x), (ii) �Br (x) = r−1‖x‖,
and (iii) �X(x+ y) ≤ �X(x)+�X(y) for all x ∈ R

n.
Theorem 2: Let L be a λ-contractive set for the system (1)

with w = 0 and the constraint set (X ,U). For each x ∈ L,
define the set-valued map

Lu(x) = {u ∈ U : Ax+ Bu ∈ λ�L(x)L}. (11)

Furthermore, let Xf ⊆ L be an RPI set for the closed-loop
system (7) and constraint set (2) that contains the origin in its
interior. Then, the closed-loop system x+ = Ax+Bκsnn(x)+w
is ISS in Xf , where κsnn(x) := κ(x,Lu(x)).

Proof: The proof involves showing that the Minkowski
function V(x) = �L(x) is an ISS-Lyapunov function for
x+ = Ax + Bκsnn(x) + w. Since L is non-empty, there exist
constants 0 < r2 < r1 such that Br2 ⊂ L ⊂ Br1 . From
Lemma 2(i, ii), this implies c1‖x‖ ≤ �L(x) ≤ c2‖x‖, with
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c1 = r−1
1 and c2 = r−1

2 such that V(·) satisfies (10a). Next,
the constraints (11) enforce the following for all x ∈ Xf

�L(Ax+ Bκsnn(x)) ≤ λ�L(x).

Moreover, the inequality �L(x+) − �L(Ax + Bκsnn(x)) ≤
�L(w) must hold based on Lemma 2(iii). By combining these
two inequalities and (10a), it follows that

�L(x+)−�L(x) ≤ −α3(‖x‖)+ σ(‖w‖),
where α3(‖x‖) = (1 − λ)c1‖x‖ and σ(‖w‖) = c2‖w‖. The
statement then follows from Lemma 1.

Theorem 2 assumes robust feasibility of a subset of the state
space, which cannot be guaranteed a priori in general. One way
to recover this property is to select S = Cu(x)∩Lu(x); however,
these constraints are not guaranteed to be recursively feasible.
In practice, the stability constraint u ∈ Lu(x) can be softened
using the exact penalty function method [22], which ensures
that robust feasibility holds (Theorem 1) and the closed-loop
system is ISS in any RPI subset of C ∩ L (Theorem 2).

The stability result in Theorem 2 can be strengthened in the
absence of disturbances, i.e., w = 0 in system (1).

Corollary 1: For any initial condition x0 ∈ L, where the
set L satisfies the conditions of Theorem 2, the origin of the
closed-loop system xk+1 = Axk + Bκsnn(xk) is asymptotically
stable and satisfies constraints (xk, κsnn(xk)) ∈ X × U for all
times k ∈ N.

The proof of this result is omitted due to space limitations
but follows from the ISS property with W = {0} and recursive
feasibility of the control law κsnn(x) according to established
properties of λ-contractive sets [16].

IV. OFFLINE MULTIPARAMETRIC SOLUTION TO THE

PROJECTION OPTIMIZATION

The projection operator (6) is implicitly defined as the solu-
tion to an optimization problem whose structure depends on
the chosen set S . Under Assumption 1, the control input,
the maximal RCI, and the maximal λ-contractive sets are all
polytopes that can be written in terms of their irreducible
halfspace representations. This implies that the constraints
S under both Theorems 1 and 2 are linear such that (6)
is a quadratic program (QP) when ‖ · ‖22 is used in the
objective.

The current state x is a parameter in the projected con-
trol law (6), similar to MPC. This problem can be solved
online using one of the many QP solvers tailored to embedded
applications, e.g., [23], [24], or offline using multiparamet-
ric quadratic programming (mpQP) algorithms, e.g., [6]. The
latter approach can drastically reduce the memory and com-
putational load when the dimensions of the QP are fairly
small [25]. However, in such a case when an explicit solu-
tion is desired, we are unable to directly apply mpQP
algorithms to the projection since x does not appear lin-
early in (6). We can address this challenge by defining an
equivalent problem in a lifted space that depends on S .
For S = Cu(x), the nonlinearity ũ = κdnn(x) is fixed
given the current state, so we can compute an explicit solu-
tion with respect to the “lifted” parameter vector θ =

[x�, ũ�]�. Accordingly, the projection can be expressed in
standard form

min
u

1

2
u�Hu+ θ�Fu,

s.t. Gu ≤ b+ Sθ, θ ∈ �, (12)

where � = C×Udnn is the set of parameters, Udnn ⊇ κdnn(C) is
a bounding box for the DNN outputs, and H, F, G, S, b can be
derived from standard algebraic manipulations. The solution
u� : �→ U to this mpQP is a piecewise affine (PWA) function
of the form [6]

u�(θ) = Kiθ + hi if Eiθ ≤ ei, (13)

where the polyhedral sets {θ : Eiθ ≤ ei}Ri=1 are a partition of
� composed of R critical regions. Thus, the proposed robustly
feasible control law κfnn(x) in Theorem 1 is the convolution
of a DNN with a PWA function that can be obtained by sub-
stituting θ ← [x�, κdnn(x)�]� into (13). Note that a similar
result holds for the stabilizing control law κsnn(x) in Theorem 2
when the parameter vector is chosen as θ = [x�, ũ�, α]�, with
α = �L(x). Given the polytopic set L = {x : FLx ≤ 1}, the
Minkowski function can be evaluated as �L(x) = max(FLx)
where 1 is a vector of all ones and max(·) is the maximum
element of any vector.

The number of critical regions defining the PWA solution
of an mpQP may increase exponentially with the number
of constraints, leading to heavy memory and computational
loads. This is known to be an important limitation of explicit
MPC [6], especially for problems with long prediction hori-
zons. The proposed controllers, however, overcome this chal-
lenge since the number of constraints in the projection (6) is
independent of the prediction horizon. Furthermore, if needed,
the number of constraints defining the invariant sets can
be reduced [26] at the cost of a smaller feasible region.
We also note that the proposed approach is applicable to
MPC problems for which explicit solutions cannot readily
be obtained such as those with nonlinear objectives and/or
nonlinear parametrized feedback policies in the prediction.

Remark 2: In the absence of state constraints, Lu(x) = U .
When U is composed of box constraints, then the projection
in Theorem 1 reduces to a simple saturation operation.

Remark 3: The idea of explicitly solving the Euclidean
projection onto non-trivial polyhedral constraints with mpQP
methods has been explored in [27], which shows that the
resulting PWA function has particular structure that can
be exploited for efficient online evaluation. However, it is
unknown if (and when) this explicit solution is preferred over
state-of-the-art embedded QP solvers unless the memory and
worst-case complexity are exactly certified. This certification
problem, along with new approaches that combine explicit and
implicit ideas, has been recently addressed in [25], [28] for
particular QP solution methods.

V. CASE STUDY

The following double integrator is a benchmark problem in
the robust MPC literature

x+ =
[

1 1
0 1

]
x+

[
1
1

]
u+ w, (14)
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where W = {w ∈ R
2 : ‖w‖∞ ≤ 1.5}, U = {u ∈ R :

‖u‖∞ ≤ 5}, and X = {x ∈ R
2 : x ∈ [−50, 10] × [−50, 10]}

correspond to the constraint sets in (2). We consider the ideal
control law κrmpc to be the solution to a multi-stage MPC
problem, which optimizes over a feedback policy defined in
terms of a scenario tree [29]. This implies that the disturbance
set must be approximated by a discrete number of scenar-
ios W ≈ W̃ = {w1, . . . , ws}, where s ∈ N denotes the total
number of scenarios. Here, we take all combinations of the
minimum, nominal, and maximum values of the disturbance
such that s = 32 = 9. The optimization problem solved at
each sampling time is then given by

min
U

N−1∑
k=0

sk∑
i=1

�(xi
k, ui

k)+
sN∑

i=1

�f (x
i
N),

s.t. X̃k+1 =
sk⋃

i=1

s⋃
j=1

Axi
k + Bui

k + wj,

X̃0 = {x}, (X̃k, Ũk) ⊆ X × U , X̃N ⊆ Xf ,

∀k = 0, . . . , N − 1, (15)

where N ∈ N is the prediction horizon, X̃k = {xi
k}s

k

i=1 is a
point-wise approximation of the reachable state set at time
k, Ũk = {ui

k}s
k

i=1 is the set of inputs in the scenario tree at
time k, U = {Ũ0, . . . , ŨN−1}, �(·) is the stage cost function,
�f (·) is the terminal cost function, and Xf is the terminal set.
To avoid exponential growth in the scenario tree size with
respect to N, we consider branching in the tree only up until
a certain stage, often referred to as the robust horizon Nr.
Thus, we let κrmpc(x) = u1�

0 (x) denote the ideal multi-stage
control law with design parameters: N = 10, Nr = 2, �(x, u) =
‖x‖22 + 0.01‖u‖22, �f (x) = 0, and Xf = X . Let XF denote the
feasible region of (15). These chosen design parameters do not
guarantee recursive feasibility in XF; however, it was verified
through simulations that Cmax ⊆ XF is RPI for the closed-loop
system x+ = Ax+Bκrmpc(x)+w and constraints (2) such that
Xrmpc = Cmax is the relevant region of attraction, which can
be calculated using (9).

We look to obtain DNN approximations of the form (4)
to the ideal multistage control law. Motivated by [12], the
activation functions were chosen to be rectified linear units.
Training data was generated by solving (15) at Ns = 1000
points randomly sampled in Xrmpc using the interior point
solver IPOPT [30]. The DNN was trained using the Levenberg-
Marquardt algorithm in the Deep Learning Toolbox [31], and
κfnn was constructed using C = Cmax in Theorem 1. The result-
ing projection operator was formulated as a mpQP (12) and
solved with MPT3 [17], which generated a PWA function
with R = 11 regions. All computations were performed in
MATLAB R2019a on a MacBook Pro with 32 GB of RAM
and 2.3 GHz Intel i9 processor.

Since the network structure has a significant influence on
training, results were compiled for various numbers of nodes
M and layers L in Table I, where ML = 30 to approximately
fix the network complexity. We define the mean squared error
(MSE) between κrmpc and an approximate control law κ̂ as

MSE = 1

Nval

Nval∑
i=1

‖κrmpc(x
i)− κ̂(xi)‖22, (16)

TABLE I
APPROXIMATE CLOSED-LOOP ROBUST MPC PERFORMANCE

METRICS FOR VARIOUS NETWORK STRUCTURES

Fig. 1. Phase plot of the closed-loop state profiles for the double inte-
grator under the ideal multistage control law (ms) and the proposed
approximate MPC law from Theorem 1 with (M, L) = (6, 5) (fnn). The
disturbance is zero and results are shown for initial states at the vertices
of Cmax.

where {xi}Nval
i=1 is a set of validation points randomly sampled

from Xrmpc and Nval = 1000 is the total number of validation
points. The MSE provides a measure of accuracy for κ̂(x)
averaged across the feasible region of the controller. From
Table I, we can see that (M, L) = (6, 5) yields the lowest MSE,
suggesting that one should strike a balance between network
width and depth. To demonstrate the key advantage of the
proposed projection, we also report the percentage of feasible
closed-loop trajectories under the approximate control law. We
define this quantity as follows. Let {wi

k ∈ W}Nval
i=1 be a set

of randomly sampled disturbance values for all k ∈ N[0,Nsim]
where Nsim = 50 is the number of simulation time steps. The
closed-loop system under the approximate control law then
evolves as

xi
k+1 = Axi

k + Bκ̂(xi
k)+ wi

k, xi
0 = [−50,−3.5]�, (17)

where the initial state is a vertex of Cmax that leads to active
state constraints and thus a reasonably high probability of con-
straint violation. The ith trajectory is feasible if it satisfies
(xi

k, κ̂(xi
k)) ∈ X × U for all k ∈ N[0,Nsim]. From Table I, we

see that κdnn results in closed-loop state constraint violation in
all considered cases, whereas κfnn provides a robust feasibility
certificate by design. We emphasize that this is an essential
property to guarantee in safety-critical applications and that it
holds regardless of the DNN approximation error.

The online evaluation times of the approximate MPC laws,
averaged over the set of random validation samples, are also
shown Table I. For comparison purposes, the ideal control
law κrmpc took 314.6± 78.4 ms to be evaluated using IPOPT
versus 0.76 ± 0.09 ms for κfnn with (M, L) = (6, 5), repre-
senting a speedup of over 400 times. Fig. 1 shows that the
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Fig. 2. Phase plot of the closed-loop profiles for the double integrator
under the ideal multistage control law (ms), the poorly trained DNN-
approximated MPC law with (M, L) = (2, 15) (dnn), and the proposed
approximate MPC laws from Theorem 2 (fnn) and Theorem 2 (snn).

closed-loop behavior is nearly identical for these two con-
trol laws whenever the system is initialized at each vertex
of Cmax, which suggests that the improvement in online cost
and memory footprint did not come at the cost of a loss in
performance. In addition, as shown in Fig. 2, the closed-loop
system is unstable for κdnn with (M, L) = (2, 15), which is a
direct consequence of the large MSE. Although κfnn is able
to ensure constraints are satisfied, it is unable to drive the
system to the origin, even in the case of zero disturbance. By
implementing κsnn from Theorem 2 (λ = 0.99), we are able
to guarantee the closed-loop system is ISS, with only minor
increases in online cost and memory footprint.

VI. CONCLUSION AND FUTURE WORK

This letter addresses the problem of approximating com-
putationally expensive closed-loop robust MPC laws using
deep neural networks. A real-time, projection-based strategy
is developed for ensuring robust feasibility and input-to-state
stability of the closed-loop system under the approximated
control law, which is essential for safety-critical applications
with fast sampling times. We also show that multiparamet-
ric quadratic programming algorithms can be used to solve
the projection problem fully offline. Future work will focus
on ways to extend this projection to larger-scale and non-
linear systems as well as its efficient implementation on
resource-limited embedded control hardware.
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