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Abstract: Bayesian optimization (BO) has shown great promise as a data-efficient strategy for
the global optimization of expensive, black-box functions in a plethora of control applications.
Traditional BO is derivative-free, as it solely relies on observations of a performance function
to find its optimum. Recently, so-called first-order BO methods have been proposed that
additionally exploit gradient information of the performance function to accelerate convergence.
First-order BO methods mostly utilize standard acquisition functions, while indirectly using
gradient information in the kernel structure to learn more accurate probabilistic surrogates
for the performance function. In this work, we present a gradient-enhanced BO method that
directly exploits performance function (zeroth-order) and its corresponding gradient (first-order)
evaluations in the acquisition function. To this end, a novel gradient-based acquisition function is
proposed that can identify stationary points of the performance optimization problem. We then
leverage ideas from multi-objective optimization to develop an effective strategy for finding query
points that optimally tradeoff between a zeroth-order acquisition function and the proposed
gradient-based acquisition function. We show how the proposed acquisition-ensemble gradient-
enhanced BO (AEGEBO) method enables accelerating convergence of policy-based reinforcement
learning by combining noisy observations of the reward function and its gradient that can be
directly estimated from closed-loop data. The performance of AEGBO is compared to standard
BO and the well-known REINFORCE algorithm on a benchmark LQR problem, for which we
consistently observe significantly improved performance over a limited data budget.
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1. INTRODUCTION

In recent years, there has been a growing interest in the
use of black-box (or derivative-free) optimization in a
variety of real-world control applications. In particular,
Bayesian optimization (BO) has emerged as an effective
strategy for control-oriented model learning (Bansal et al.,
2017; Makrygiorgos et al., 2022), controller auto-tuning
(Paulson and Mesbah, 2020; Paulson et al., 2022), and
direct policy-search reinforcement learning (Pautrat et al.,
2018; Turchetta et al., 2020; Chatzilygeroudis et al., 2019).
BO is considered especially useful for “global” optimization
of black-box and expensive-to-evaluate functions (Frazier,
2018), such as closed-loop control performance measures.
BO provides a principled strategy to sequentially query
candidate points using an acquisition function (AF), which
measures the information value of sampling at a new
point in terms of a probabilistic surrogate model of the
performance function constructed from previous function
observations (i.e., zeroth-order information).

⋆ G. Makrygiorgos and J.A. Paulson have equally contributed to
this work. The work was supported by the US National Science
Foundation under grants 2130734 and 2237616.

Nevertheless, in various optimization and control settings,
first-order gradient information, namely observations of
partial derivatives of performance function with respect
to decision variables, is readily available. Enhancing the
convergence rate of BO using gradient information has
been investigated in few recent works (Wu et al., 2017;
Shekhar and Javidi, 2021). The main idea is to condition
a Gaussian Process (GP) model of the performance
function on gradient information to obtain more accurate
predictions, which can in turn yield faster convergence.
As such, the first-order gradient information is used
indirectly in searching for the candidate sample points.
More recently, the direct use of gradients in the search
process has been investigated, mainly in the context
of policy-search reinforcement learning (RL) to locally
enhance the performance of gradient descent. To this
end, Müller et al. (2021) and Nguyen et al. (2022) have
utilized AFs based on only first-order information to
obtain improved gradient estimates for a black-box reward
function using gradients of a GP model. Penubothula
et al. (2021) proposed a first-order BO method that uses a
collection of AFs built separately for each partial derivative.
A clustering method is then used to find a consensus point
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via a convex combination of the set optimal points found
for each individual AF. Not only does this method require
several acquisition functions to be maximized at each
iteration, the heuristic clustering method is not guaranteed
to optimally tradeoff between these different AFs.

In this work, we present a gradient-enhanced BO method
that can exploit performance and gradient function eval-
uations using an ensemble of two acquisition functions.
The contribution of this paper is twofold. The first is the
derivation of a cheap-to-evaluate gradient-based acquisition
function that can identify stationary points of the perfor-
mance optimization problem. The second contribution is a
simple, yet effective strategy for finding query points that
optimally tradeoff between a zeroth-order AF and the pro-
posed gradient-based AF via multi-objective optimization.
Thus, the proposed acquisition-ensemble gradient-enhanced
BO (AEGBO) method can discover a set of query points
that are Pareto optimal with respect to both sources of
information. Furthermore, we discuss how AEGBO can
be applied to policy-search RL to accelerate convergence
by using noisy observations of reward function and its
gradient, which can be directly estimated from closed-
loop observations of the reward function using the policy
gradient theorem (Sutton et al., 1999). The performance of
AEGBO is compared to standard BO and the well-known
REINFORCE algorithm on a benchmark LQR problem.

2. NOTATION AND PRELIMINARIES

2.1 Problem Statement

Given an expensive-to-evaluate function f : X → R, we
look to find the design (or input) vector x⋆ that globally
maximizes the function, i.e.,

x⋆ ∈ argmax
x∈X

f(x), (1)

where X ⊂ Rd is the optimization domain. The mathemat-
ical structure of f is assumed to be unknown such that we
must rely on some “learning” strategy to infer a represen-
tation of the function from data. To execute the learning
process, we assume that we have the ability to query f
at any desired input x ∈ X and receive a (possibly noisy)
evaluation of f(x) and its gradient ∇f(x). Standard BO
methods consider zeroth-order (derivative-free) function
evaluations only, which fundamentally limits performance
when additional gradient information is available. The goal
of this work is to simultaneously utilize zeroth- and first-
order information in a computationally efficient manner.

2.2 Gaussian Processes with Derivative Information

We place a GP prior over f to build a probabilistic surrogate
model that is non-parametric. A GP model is fully specified
by its mean function µ : X → R and covariance (or kernel)
function k : X × X → R. Since the gradient is a linear
operator, the gradient of a GP must remain a GP, such
that we can create a joint GP model with the following
updated mean function µ̃ and covariance function k̃

µ̃(x) =

[
µ(x)
∇µ(x)

]
, (2a)

k̃(x, x′) =

[
k(x, x′) ∇x′k(x, x′)⊤

∇xk(x, x
′) ∇x(∇x′k(x, x′)⊤)

]
. (2b)

The extended mean function µ̃ : X → Rd+1 maps to a
(d+ 1)-dimensional vector, while the extended covariance

function k̃ : X × X → Rd+1×d+1 maps to a (d + 1) ×
(d + 1) matrix, which can capture correlation between
the function and its d partial derivatives that make
up the gradient vector (Williams and Rasmussen, 2006,
Sect. 9.4). We assume access to some dataset D(n) =
{(x(i), y(i),∇y(i))}ni=1 composed of n sample points with
corresponding noisy observations of the objective and
gradient at each x(i) given by

(y(i),∇y(i)) ∼ N
(
(f(x(i)),∇f(x(i))),Σ(i)

)
, (3)

where Σ(i) ∈ Rd+1×d+1 is a positive-definite covariance
matrix for the ith sample point. If Σ(i) is not known, then
we typically parametrize it as Σ(i) = diag

(
σ2
1 , . . . , σ

2
d+1

)
,

where σ2
k denotes a fixed independent variance term for each

separate element of the observation vector k ∈ {1, . . . , d+1}
that can be estimated from data.

Given the current dataset D(n), the posterior (f,∇f) | D(n)

remains a joint GP with the following updated mean
function µ̃(n) and covariance function k̃(n)

µ̃(n)(x) = µ̃(x) + k̃
⊤
n (x)K̃

−1

n (ỹn − µ̃n), (4a)

k̃(n)(x, x′) = k̃(x, x′)− k̃
⊤
n (x)K̃

−1

n k̃n(x), (4b)

where k̃n(x) = [k̃(x(1), x), . . . , k̃(x(n), x)]⊤ is the vector
of covariance values between the sample points and the
test point x, K̃n is the covariance matrix evaluated at
the sample points that is composed of elements [K̃n]ij =

k̃(x(i), x(j))+Σ(i)δij , ỹn = ((y(1),∇y(1)), . . . , (y(n),∇y(n)))
is a concatenated vector of all observations, and µ̃n =
(µ̃(x(1)), . . . , µ̃(x(n))) is the joint mean function evaluated
at the sample points.

2.3 Derivative-enabled Acquisition Functions

Given the probabilistic surrogate model in (4), we must
define an acquisition function α(n) : X → R to provide a
good measure of the (expected) desirability of querying
any point x ∈ X with respect to our end goal (maximizing
the unknown function f). If properly selected, one would
like to preferentially sample at the point that produces
the highest value of the acquisition function. We can then
formally define BO as the sequential learning process of
selecting next samples in the following fashion

x(n+1) ∈ argmax
x∈X

α(n)(x), (5)

where α(n)(·) represents the acquisition function induced by
the posterior conditioned on data D(n). Therefore, the main
distinction between standard BO and gradient-enhanced
BO is that D(n) includes derivative information for the
latter, which necessitates the use of a more complex GP
model. In principle, one could take advantage of any of
the previously developed acquisition functions (Frazier,
2018), such as expected improvement (EI), upper confidence
bound (UCB), or knowledge gradient (KG), by replacing
the standard posterior mean and variance predictions
for f with those derived from (4). However, performing
hyperparameter training and posterior update using (4)
can be computationally demanding. In particular, inverting
the covariance matrix K̃n for the joint GP model scales
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as O((n(d+ 1))3), which can be challenging when either n
or d is large in size. Furthermore, this additional cost can
have a big impact on the effort needed to solve (5), which
requires repeated forward predictions to be made with the
joint GP model.

To better understand the computational implications, let
us discuss the derivative-enabled KG (dKG) function, as
defined in (Wu et al., 2017). dKG measures the expected
improvement in the maximum value of the mean function
given a new observation is taken at x(n+1) = x. The use of
the mean function, as opposed to the function observations
themselves, allows for filtering out any noise present in the
observations. Although dKG is a fairly effective measure of
the value of information, it is very expensive to evaluate due
to the internal maximization over the future posterior mean
function. To mitigate this computational burden, Wu et al.
(2017) proposed to only use the best directional derivative
at each iteration. In addition to ignoring useful information
in the form of the complete set of partial derivatives of the
objective function, this approach does not fully address the
inherent challenge of the two-level optimization procedure
needed to globally solve (5) when α(n)(x) = dKGn(x).

3. ACQUISITION ENSEMBLE WITH GRADIENTS
BAYESIAN OPTIMIZATION (AEGBO)

In this section, we describe the proposed method for effi-
ciently integrating noisy function and gradient information
into the BO framework, referred to as AEGBO.

3.1 Independent Gaussian Process Models

Instead of using the complete joint GP model (4), we choose
to treat the surrogates of the objective function and each
one of its partial derivatives as independent, i.e.,

f(x) ∼ GP(µ0(x), k0(x, x
′)), (6a)

∂f(x)

∂xi
∼ GP(µi(x), ki(x, x

′)), ∀i ∈ {1, . . . , d}, (6b)

where µ0 and k0 correspond to the mean and kernel
functions for the function itself, respectively, and µi and
ki correspond to the mean and kernel functions for the
ith partial derivative of the function, respectively. This is
a special case of the joint GP model with independent

kernel functions. Let D(n) = {D(n)
0 ,D(n)

1 , . . . ,D(n)
d } be

divided into datasets corresponding to the function obser-

vations D(n)
0 and each of the partial derivative observations

{D(n)
i }di=1. Then, due to the independence assumption,

we can construct the posterior mean and kernel functions

for each of the (d + 1) GP models, denoted by µ
(n)
i (x)

and k
(n)
i (x, x′), separately using only the local data D(n)

i
for all i = 0, . . . , d. The posterior update equations are
analogous to (4), except the operations are only performed
on a subset of data, implying the computational cost has
been reduced to O((d+ 1)n3), which is linear with respect
to d. Furthermore, these operations can be carried out in
parallel, which would make the cost independent of d.

3.2 Gradient-based Acquisition Function

Here, we focus on UCB-style acquisition functions due to
their simplicity and established convergence properties (Lu
and Paulson, 2022). The UCB function is given by

α
(n)
UCB(x) = µ

(n)
0 (x) + βfσ

(n)
0 (x), (7)

where βf ∈ R+ is a hyperparameter that balances explo-

ration and exploitation, and σ
(n)
0 (x) = [k

(n)
0 (x, x)]1/2 is the

standard deviation of the posterior GP for f .

Under the independence assumption, the gradient predic-
tions do not directly impact the UCB acquisition such
that we need a new strategy for quantifying the value of
gradient information. To derive an independent source of
information, we recognize that a necessary condition for op-
timality in (1) is ∇f(x) = 0 (assuming the global maximum
lies in the interior of X). An equivalent way to represent
the solutions to this set of equations is minx∈X ∥∇f(x)∥,
which can also be stated as maxx∈X(−∥∇f(x)∥), where
∥ · ∥ denotes some vector norm; here, we use the 1-norm.
Since the gradient is also an unknown function, we can
use BO methods to tackle this optimization problem as a
way to efficiently search for stationary points of the origi-
nal maximization problem (1). An important distinction
between the gradient norm (GN) problem and (1) is that
the former involves multiple unknown functions. This is
often referred to as a decomposed BO problem, for which
standard acquisition functions do not directly apply. We
can straightforwardly develop an UCB acquisition function
for multi-output problems whenever the objective is defined
as a linear transformation of the GP models, as shown in
(Kudva et al., 2022).

Since norms are nonlinear operators, however, we need a
tailored approximation strategy for the gradient norm. We
propose the following gradient-based acquisition function
analogously to the UCB function (7)

α
(n)
GN(x) = −En{∥∇f(x)∥}+ βg

√
Varn{∥∇f(x)∥}, (8)

where Varn{·} denotes the posterior variance given Dn and
βg ∈ R+ is a hyperparmeter similar to βf . We can construct
analytic expressions for the mean and variance terms since
the absolute value of each partial derivative follows a folded
normal distribution. Starting with the mean term, we can
derive

En{∥∇f(x)∥} =
∑d

i=1 En

{∣∣∣∂f(x)∂xi

∣∣∣} , (9)

=

d∑
i=1

{
2σ

(n)
i (x)ϕ(z

(n)
i ) + µ

(n)
i (x)

[
Φ(z

(n)
i ) + Φ(z

(n)
i )

]}
,

where z
(n)
i = µ

(n)
i (x)/σ

(n)
i (x), and ϕ(·) and Φ(·) correspond

to the standard normal density function and cumulative
density function, respectively. We can similarly derive a
simple overall expression for the variance

Varn{∥∇f(x)∥ =
∑d

i=1 Varn

{∣∣∣∂f(x)∂xi

∣∣∣} , (10)

=

d∑
i=1

{
(µ

(n)
i (x))2 + (σ

(n)
i (x))2 − En

{∣∣∣∣∂f(x)∂xi

∣∣∣∣}2
}
.

Note that closed-form expressions for the inner expectation
terms have already been computed in (9). As such, our
proposed gradient-based acquisition function in (8) can be
efficiently computed using the d separate GP models for
each of the partial derivatives of the objective function.

This implies that maximizing α
(n)
GN(x) should be at worst a

linear factor of the cost required to maximize the cheap-

to-evaluate function α
(n)
UCB(x) with respect to d. This is a

substantial reduction in cost when compared to dKG.
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3.3 Combining Function and Gradient Information using
Acquisition Ensembles

Now, we are equipped with two separate acquisition

functions α
(n)
UCB(x) and α

(n)
GN(x) that, respectively, provide

independent sources of zeroth- and first-order information
regarding the maxima of f . It is unlikely that the same point
maximizes both of these functions simultaneously, meaning
we need some procedure to select a common value xn+1 that
performs reasonably well with respect to both functions.
The multi-objective optimization (MOO) framework is
suitable for this task since it allows us to systematically
tradeoff between multiple objectives.

The main goal of MOO is to characterize the set of points
on the so-called Pareto frontier, which is the set of Pareto
optimal points, i.e., feasible points x ∈ X in which favorable
movement in one objective comes at the expense of at least
one other objective. In (Chen et al., 2022), a related idea is
applied to a set of standard BO acquisition functions that
showed promising results. Therefore, we look to develop

a similar approach using αn(x) = {α(n)
1 (x), α

(n)
2 (x)} as

our set of acquisition functions, where the subscripts 1
and 2 will be used as shorthand for the UCB and GN
acquisition functions, respectively. We now formally present
the AEGBO method in terms of αn(x) as the following
sequential sampling process

x(n+1) ∈ X⋆
n = {x ∈ X : αn(x) ∈ Pn}, (11)

where X⋆
n denotes the set of Pareto optimal points given

all currently available data D(n), which is characterized by
the Pareto frontier Pn

Pn = {αn(x) : ∄y ∈ X s.t. αn(x) ≺ αn(y)}. (12)

Here, αn(x) ≺ αn(y) implies point y dominates x, which

occurs if and only if α
(n)
i (x) ≤ α

(n)
i (y) for all i ∈ {1, 2}

and ∃i ∈ 1, 2 such that α
(n)
i (x) < α

(n)
i (y). Therefore, Pn

corresponds to the set of points for which there does not
exist any feasible point that dominates it.

Although the proposed AEGBO method requires the MOO
problem (11) be solved at every iteration, this problem
involves only two cheap-to-evaluate objective functions and,
thus, can be straightforwardly solved (approximately) using
established methods such as the NSGA-II algorithm (Deb
et al., 2002). It is worth noting that all points in X⋆

n are
Pareto optimal such that there is no clear metric to select
between the candidate points in this set. In general, any
selection criteria can be utilized. Uniform random selection
criteria (in which all points from X⋆

n are potentially chosen
with equal probability) tend to reduce bias that may result
from a deterministic selection strategy. Nevertheless, other
heuristics such as initially selecting Pareto points that
achieve the lowest gradient norm (in absolute value) may
work well in practice, as used in this paper.

4. AEGBO FOR POLICY-BASED REINFORCEMENT
LEARNING OF EXPENSIVE SYSTEMS

Reinforcement learning (RL) is a semi-supervised learning
method in which a so-called “agent” attempts to learn the
best way to maximize a long-term reward function through
trial-and-error interactions with the “environment.” There
has been a vast amount of work on RL, which can be

roughly viewed as a collection of solution approaches to
stochastic optimal control problems of the form

max
π0:N−1

Ew0:N−1

{∑N−1
t=0 rt(zt, ut, wt) + rN (zN )

}
, (13)

s.t. zt+1 = gt(zt, ut, wt), ut = πt(τt),

where zt, ut, and wt are the system state, control input, and
disturbance at time t, respectively, gt(·) is the (unknown)
state transition function that governs the dynamics at time
t, rt(·) is the reward gained at time step t, πt(·) is the
feedback control policy at time t that can be any feasible
function of the observed data trajectory up until time
t, i.e., τt = (u0, . . . , ut−1, x0, . . . , xt), and N is the time
horizon. In cases where the state transition rules {gt(·)}
are unknown, RL methods generally attempt to solve (13)
by transforming the problem into a learning task.

One of the most popular variants of RL is the so-called
policy-based RL methods that look to learn the optimal
settings for a parametrized stochastic policy function
p(τ ;x), where x refers to adjustable policy parameters.
Let us define R(τ) as the overall reward function computed
over a single dynamic trajectory τ . Due to the random
disturbances present in the dynamics and the stochasticity
of the policy, τ is random with some probability distribution
p(τ ;x) that is parametrized by x such that

f(x) = Ep(τ ;x){R(τ)} =

∫
R(τ)p(τ ;x)dτ (14)

matches our starting problem (1) since f is unknown. A
key point here is that noisy observations are critically
important to handle in policy-based RL since we cannot
evaluate the integral in (14) exactly and must resort

to some sampling strategy, e.g., 1
Ns

∑Ns

i=1 R(τ (i)) where

τ (i) ∼ p(τ ;x). Standard BO methods can be applied in such
cases, however, they only take advantage of zeroth-order
information. Policy gradient methods are a commonly used
alternative that exploit the fact that gradient estimates of
the reward can be derived as follows

∇f(x) = Ep(τ ;x){R(τ)∇x log p(τ ;x)}, (15)

which can be evaluated using only gradients of the policy
for Markov processes (Sutton et al., 1999). Traditional
policy gradient methods, such as REINFORCE (Williams,
1992), then apply stochastic gradient ascent to update an
initial x(0) using a mini-batch of samples, i.e.,

x(n+1) = x(n) +
ηn
Ns

(
Ns∑
i=1

R(τ (i))∇x log p(τ
(i);x)

)
, (16)

where ηn is the step size at iteration n (sometimes referred
to as a learning rate). However, as evident from (16),
these types of policy gradient methods only use estimates
of the current gradient at each iteration, which neglects
valuable information about the current and past reward
and gradient estimates. An efficient sampling strategy
is extremely important whenever the closed-loop data
collection process is expensive, for example, when the
system dynamics are defined in terms of a high-fidelity
simulator, or time-consuming experiments.

The proposed AEGBO method in Section 3 is well-suited
to take advantage of the complete history of reward and
its gradient evaluations at every iteration. Therefore, we
can think of AEGBO as a powerful hybrid strategy that
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inherits the efficient global search capability of BO and the
useful local search behavior of REINFORCE.

5. ILLUSTRATIVE EXAMPLE

5.1 System and Policy Description

To demonstrate the achievable performance gains with
AEGBO, we consider a linear quadratic regulator (LQR)
problem of the form (13) with a quadratic reward function
rt(zt, ut) = −z⊤t Qzt − u⊤

t Rut, a linear system dynamic
zt+1 = Azt+But+wt with wt ∼ N (0, 10−4I), no terminal
cost, and a time horizon of N = 10. The true values for
(A,B,Q,R) are given by

A = 0.5

1 0 2 0
0 1 0 1
0 0 1 2
1 0 0 1

 , B =

0.500
0

 , Q = 10−2I, R = 10−2.

The initial condition is z0 = [2.0,−1.5,−2.0, 1.0]⊤. When
the system dynamics are known, the LQR problem can be
analytically solved using dynamic programming. For the
settings considered here, the optimal control policy as N →
∞ is π⋆(z) = −Kz where K = [1.172, 0.011, 1.516, 1.469].
This corresponds to an optimal reward value of −0.2455.

In the context of RL, the system dynamics are assumed
unknown such that we must repeatedly interact with the
system to learn a suitable control policy. As discussed
in Section 4, we focus on policy-based RL and assume a
stochastic linear policy function of the form

p(zt;x) = N (−x⊤zt, σ
2), (17)

where x ∈ X = [0, 2]4 ⊂ R4 are the policy parameters and
σ2 = 10−4 is a small variance term needed to ensure the
policy gradient theorem used to derive (15) holds. We use a
“mini-batch” size of Ns = 28 samples during each episode
(training epoch) to estimate the reward and gradient values.
We select the exploration parameters as βf = 0.1 and
βg = 0.

5.2 Results and Performance Comparisons

We compare AEGBO to two baseline algorithms on the
LQR problem to demonstrate its performance improve-
ments. Since our goal is to identify the policy parameters
that maximize the reward function in as few iterations as
possible, we use simple regret as our performance metric

Regretn(D(0)) = f⋆ − max
i=1,...,n

y(i), (18)

where f⋆ = maxx∈X f(x) = −0.2455 is the true global
maximum. By definition, simple regret measures the
distance between the best observed point and the true
solution, which depends on the initial datasetD(0). Here, we
assume that D(0) is composed of 4 points chosen uniformly
at random from the design space X. We estimate average
performance E{Regretn(D(0))} by repeating the algorithms
100 times for different D(0) and report confidence intervals
calculated with the standard error formula. The two
baseline algorithms are:

BO: The sampled point is x(n+1) ∈ argmaxx∈X α
(n)
UCB(x),

which only considers zeroth-order information. We keep all
other settings the same as that used in AEGBO.

Fig. 1. Expected simple regret (circles) and the correspond-
ing standard deviation (vertical lines), estimated using
100 independent realizations of the initial dataset, over
40 closed-loop episodes for AEGBO, traditional BO,
and REINFORCE.

REINFORCE: The REINFORCE algorithm corresponds
to the stochastic gradient ascent update step shown in
(16), which uses only local first-order information at every
iteration. We set the learning rate ηn = 0.1, which is a
commonly used default value (and is the same order as the
exploration parameters used in BO and AEGBO).

The average simple regret versus the number of iterations
(or episodes e for short) is shown in Fig. 1. We see that
AEGBO outperforms BO and REINFORCE within 40
total closed-loop episodes, achieving almost more than one
order of magnitude reduction in simple regret by iteration
40. Furthermore, AEGBO shows a steady reduction in
simple regret after every episode, implying it can more
consistently identify policy parameters that increase the
reward. REINFORCE, on the other hand, shows an initial
fast drop in regret, but its convergence rate quickly slows
down. It is also worth noting that REINFORCE would
be expected to show much worse performance on more
challenging problems that contain multiple local optima
since it is prone to getting stuck in local solutions.

To better understand the underlying source of AEGBO’s
improved performance, Fig. 2 shows the evolution of
the Pareto frontier in (12) over different episodes. In
the early episodes, we see that Pareto frontier is fairly
elongated since there is a significant amount of uncertainty
in the GP predictions. This implies there is significant
mismatch between the points that may lead to large reward
values and those that are likely to satisfy the necessary
optimality conditions given our current information. As
more data is collected, we see that the Pareto frontier begins
to shrink, indicating lower uncertainty in the predicted
maximum point. Furthermore, we see that the proposed
GN acquisition function provides us with an independent
source of information that helps select high reward points
that are also likely to satisfy ∇f(x) = 0. Looking at e = 30,
for example, we see that several points are predicted to
perfectly satisfy the necessary optimality condition while
simultaneously having large reward values. Thus, the fusion
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Fig. 2. Pareto frontiers for the multi-objective acquisition
function for four different closed-loop episodes e ∈
{1, 5, 15, 30} in a representative AEGBO run. The x-
axis corresponds to the zeroth-order UCB acquisition
function in (7) and the y-axis corresponds to the first-
order GN acquisition function in (8).

of zeroth- and first-order information appears to be at the
heart of the improved performance observed in Fig. 1.

6. CONCLUSIONS

This paper presented a gradient-enhanced Bayesian op-
timization (BO) method, referred to as AEGBO, that
can simultaneously exploit evaluations of performance
function and its gradients. AEGBO is composed of two
key parts: (i) a new first-order acquisition function that
quantifies the likelihood of a future query point satisfying
necessary optimality conditions, and (ii) a multi-objective
optimization approach for combining zeroth- and first-order
information to accelerate convergence toward the global
solution. We discussed how AEGBO can be applied to
policy-search reinforcement learning (RL) problems at vir-
tually no additional cost over traditional BO. The proposed
AEGBO method is demonstrated on a RL problem inspired
from LQR, where the goal was to identify optimal policy
parameters using as little closed-loop data as possible. We
showed that AEGBO can quickly identify near-optimal
solutions in significantly fewer iterations than state-of-the-
art alternative methods.
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