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Abstract 
This paper presents a model-based control and optimization approach for real-time 
improved operation of industrial batch crystallization processes. The control approach is 
successfully tested on a pilot as well as on a full-scale industrial crystallizer. The core 
component of the control approach is a nonlinear model predictive controller or a 
nonlinear dynamic optimizer that utilizes a reduced-order nonlinear process model for 
on-line computation of the optimal input profiles. An observer is used to facilitate 
closed-loop implementation of the controller or the optimizer. The observer also enables 
estimation of the unmeasured process variables.  
The proposed model-based control and optimization approach aims to maximize the 
batch throughput, while satisfying requirements on the product quality. Optimal control 
of the crystal growth rate is the key to fulfilment of this objective. Experimental results 
show that real-time application of the control approach leads to a substantial increase, 
i.e. up to 30%, in the batch productivity, while preserving the product quality. The 
control approach also facilitates the control of the process to its equilibrium conditions 
at the batch end. This is essential for industrial applicability of the control approach.  
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1. Introduction 
A substantial amount of materials in the pharmaceutical, food, and fine chemical 
industry is produced in crystalline form. Batch crystallization is a key separation and 
purification step in these industries, with a significant impact on the efficiency and 
profitability of the overall process.  
In view of the fierce economic competition between the companies manufacturing high 
value-added crystalline products, there is an ever-increasing interest in optimal 
operation of batch crystallization processes. This is to boost the process productivity, 
while satisfying the stringent product quality and batch reproducibility requirements. 
Currently, batch crystallizers are often operated by tracking predetermined recipes, e.g. 
temperature, feed flow and/or heat input trajectories, which are largely based on 
operator’s experience. However, the standard PID controllers used to implement the 
batch recipes lack the ability to push the process to its most optimal operating trajectory, 
while various operational and quality constraints are honoured.    
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In recent years, the development of computationally powerful modelling and 
optimization tools has greatly facilitated the use of first principles models in devising 
optimal batch recipes. A real-time optimal control approach continuously optimizes the 
batch crystallizer on the basis of its current state and, therefore, drives the process to its 
most optimal operation at any time throughout the batch (Nagy 2009; Mesbah et al. 
2009). On-line optimization of the system also allows us to rather effectively cope with 
model imperfections and process uncertainties, namely measurement errors, 
unmeasured process disturbances and irreproducible start-ups, i.e. unknown initial 
conditions. This is due to the feedback of the system states that are estimated by an 
observer using the process model and the available in-situ process measurements. 
This paper presents a model-based control and optimization approach for the optimal 
operation of industrial batch crystallizers. The controller aims to optimally operate the 
batch process within the meta-stable zone in order to maximize the production capacity, 
while fulfilling the product quality requirements. This is realized by manipulating the 
supersaturation to control the crystal growth rate during the batch run. In addition to the 
batch productivity, the crystal growth rate has a close relation with various product 
quality attributes, namely the purity of crystals, crystal habit and crystal size 
distribution. The desired product quality specifications are normally achieved at low 
crystal growth rates, whereas increase in the batch productivity demands the highest 
possible crystal growth rate. Hence, a trade-off between the achievement of sufficient 
product quality and the maximization of batch throughput needs to be sought. This 
control problem is well suited for a model-based control approach where conflicting 
operational considerations can be traded off against each other by satisfying various 
constraints defined on process inputs and outputs.  
The proposed model-based control and optimization approach utilizes either a Nonlinear 
Model Predictive Controller (NMPC) or a nonlinear dynamic optimizer for on-line 
computation of the optimal input profiles that govern the supersaturation in the 
crystallizer. The optimal control problem is formulated such that the crystal growth rate 
is kept at a predetermined maximum rate throughout the batch. This allows us to realize 
a compromise between the fulfilment of product quality requirements and the 
maximization of batch throughput. An observer is used to facilitate the on-line 
implementation of the control approach. The observer compensates for the detrimental 
effects of model imperfections and process uncertainties to some degree. Besides, the 
observer enables us to estimate the unmeasured process variables, e.g. crystal growth 
rate, that are to be controlled. The real-time performance of the NMPC and the dynamic 
optimizer is examined by several implementations on a semi-industrial evaporative 75-
liter draft tube crystallizer. The application of the proposed control approach to 
industrial crystallizers is also investigated by testing the NMPC on a full-scale industrial 
evaporative 14 m3 forced circulation crystallizer.  

2. Crystallization Model 
The cornerstone of any model-based control and optimization approach is its dynamic 
process model, describing the dynamic relation between the relevant inputs and outputs 
of the system to be controlled. These control approaches utilize the model to 
continuously explore the degrees of freedom in the process in order to achieve the 
maximum performance in accordance with an optimization criterion.  
The dynamic behaviour of a crystallization process can be described by the population 
balance equation, along with the conservation equations and kinetic relations. The 
population balance equation is a hyperbolic partial differential equation that describes  
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Fig. 1. Block diagram of the model-based control approach. 

 
the evolution of the crystal size distribution in time. The population balance equation is 
numerically solved by approximating the original equation with a finite number of 
ordinary differential equations through discretization of the crystal size distribution. 
Accurate numerical solution of the population balance equation often requires a large 
number of discretization points that may render real-time application of the model-
based control strategy computationally too expensive.  
In this work, the method of moments (Randolph and Larson, 1971) is applied to the 
population balance equation in order to recast it into a set of computationally affordable 
ordinary differential equations. The method of moments reduces the information on the 
crystal size distribution such that only relevant properties of the total crystal population 
required for the intended control application are calculated. Hence, batch crystallizers 
are represented by a set of nonlinear differential algebraic equations of the general form 
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where f and g denote the system of model state and algebraic equations, respectively; h 
is the system of model output equations; x is the state vector; z is the vector of algebraic 
variables; y is the vector of process outputs; u is the vector of process inputs; θ is the 
model parameter set; t is the time. For the systems at hand, the state vector contains the 
leading moments of the crystal size distribution, the solute concentration and the 
crystallizer temperature, whereas the vector of algebraic variables is comprised of the 
kinetic variables, namely the crystal growth rate and the total nucleation rate. On the 
other hand, the inputs of the system are the mechanisms to influence the supersaturation 
and, consequently, govern the crystallization kinetic phenomena. The model parameters, 
namely the kinetic parameters, are estimated based on a set of historical data of normal 
batch operation.   

3. Model-based Control Approach 
The proposed model-based control and optimization approach is depicted in Fig. 1. As 
can be seen, the control approach consists of various scheduled blocks that exchange 
their information via a central OPC Server. The core component of the control approach 
is the model-based controller, i.e. the nonlinear model predictive controller (INCA-
NLMPC, IPCOS, The Netherlands) or the dynamic optimizer. These optimization-based 
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control strategies utilize the nonlinear moment model for on-line computation of the 
optimal control actions over the future control horizon Nc given a certain performance 
index. The latter index is subject to various equality, i.e. process model, and inequality 
constraints evaluated over the prediction horizon Np. The optimal control problem is 
stated in its most general form as 
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This performance index allows us to weigh deviations on the process inputs and outputs 
with respect to their reference trajectories, while minimizing the control effort, i.e. Δu, 
put into the system.  
The primary difference between the NMPC and the dynamic optimizer lies in how the 
process model is exploited to determine the optimal control actions. The dynamic 
optimizer computes the control actions using the nonlinear process model in one stage; 
the simultaneous optimization strategy is used to convert the optimal control problem to 
a nonlinear programming problem (Mesbah et al., 2009). On the other hand, the NMPC 
first utilizes the nonlinear process model to forecast the system behaviour over the 
prediction horizon. Subsequently, a local Linear Time-Variant (LTV) model extracted 
from the original nonlinear model at each operating point is used for optimization of the 
performance index (Landlust et al., 2008).       
In real-time applications, the optimal control problem is continuously solved on-line in 
a receding horizon mode, where the system states recursively initialize the controller at 
regular time intervals. Hence, an observer, namely an Extended Kalman Filter (EKF) or 
an Extended Luenberger-type Observer (ELO), is employed to estimate the states 
(Kalbasenka et al., 2006). The state estimation is done at regular sampling times, when 
measurements, e.g. solute concentration, crystal content, crystal size distribution, 
become available. The EKF locally linearizes the nonlinear process model at each 
sampling time, whereas the ELO uses the original process model for state estimation.    

4. Experimental Results  

4.1. Case 1: Semi-industrial Crystallization of Ammonium Sulphate   
The dynamic optimizer and the NMPC are applied to a seeded fed-batch evaporative 
crystallization process producing ammonium sulphate. The crystallization takes place in 
a 75-liter draft tube crystallizer equipped with a Yokogawa Distributed Control System 
(CENTUM CS3000, Japan). Seeding is exercised to ensure the reproducibility of the 
batch runs (Kalbasenka et al. 2007). The crystal size distribution is measured on-line by 
means of a laser diffraction instrument (HELOS-Vario, Sympatec, Germany). An in-
line solute concentration measuring probe is also used to monitor the supersaturation till 
the seeding point; the probe enables us to insert the seed crystals at a predetermined 
supersaturation. The evolution of the solute concentration throughout the batch is 
estimated by the extended Luenberger-type observer.     
Fig. 2 shows the experimental results. Three different batch runs are shown, namely the 
reference experiment DTc81 and the experiments DTc68 and DTc82 in which the NMPC  
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Fig. 2. Experimental results of the nonlinear model predictive controller and the dynamic optimizer 

applied to the semi-industrial ammonium sulphate crystallization process. 
 

and the dynamic optimizer are applied, respectively. As the crystal growth rate 
predominantly determines the product quality in seeded batch runs, variations of the 
crystal growth rate in relation to different heat input profiles, i.e. the supersaturation 
generation mechanism, are investigated in the various experiments. When the heat input 
is kept constant at 4.5kW in experiment DTc81, the crystal growth rate gradually decays 
towards the end of the batch without following its maximum admissible value of 
2.5×10-8 m/s. Real-time implementation of the controllers on the other hand facilitates 
effective tracking of the maximum crystal growth rate limit till the heat input hits its 
upper limit of 13 kW that renders further optimal control of the process impossible. As 
can be seen, the application of the controllers leads to a substantial increase, i.e. up to 30 
%, in the crystal content at the batch end due to higher crystal growth rates. Note that 
the mean crystal size remains almost intact as a result of the optimal seeding procedure.  
4.2. Case 2: Industrial Crystallization of Lactitol Monohydrate  
In this case study, the NMPC is implemented on a full-scale industrial crystallizer at 
PURAC Biochem BV; a seeded fed-batch evaporative forced circulation crystallizer 
equipped with a Siemens Programmable Logic Controller (PLC, Siemens S7, 
Germany). The crystal size distribution and the volumetric crystal content are measured 
together with an ultrasound measurement device (OPUS, Sympatec, Germany).  
Fig. 3 shows a comparison between the two batch runs to which the NMPC is applied 
and the original batch recipe; the detailed figures cannot be disclosed due to 
confidentially issues. As can be seen, the crystal growth rate is continuously pushed to 
its predefined maximum value by increasing the supersaturation in order to alleviate the 
adverse impact of impurities on the crystal growth rate. On the other hand, an upper 
limit is defined on the volumetric crystal content to enable automatic stabilization of the 
process at the batch end, which is essential for proper slurry handling in the downstream 
units. The supersaturation therefore decreases towards the batch end to obtain a solution 
close to equilibrium conditions with constant crystal content. In the controlled 
experiments, the final crystal content is achieved 10% faster than the original batch run.   
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             Fig. 3. Experimental results of the nonlinear model predictive controller applied to the industrial        

Lactitol Monohydrate crystallization process. 

5. Conclusions 
A model-based control and optimization approach for optimal operation of batch 
crystallizers is proposed and experimentally validated on different scales. The 
underlying optimal control problem is formulated to maximize the overall batch 
throughput by defining an upper limit on the crystal growth rate; the crystal growth rate 
constraint allows us to circumvent degradation of the product quality. The control 
approach also ensures process stabilization at the batch end by bringing the solution to 
its equilibrium conditions using an upper bound defined on the crystal content.   
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