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Abstract: The performance of predictive control strategies often degrades over time due to
growing plant-model mismatch. Closed-loop performance restoration typically requires some
form of model maintenance to reduce model uncertainty. This paper presents a stochastic
predictive control approach with integrated experiment design for nonlinear systems with
probabilistic modeling uncertainties. The integration of predictive control with experiment
design enables enhancing the information content of closed-loop data for online model adaption.
The presented approach considers control-oriented experiment design to ensure adequate model
adaptation (in probability) in terms of an admissible control performance level. The stochastic
optimal control approach is demonstrated on a continuous bioreactor case study.
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1. INTRODUCTION

Model predictive control (MPC) is widely used for ad-
vanced control of complex systems due to its ability to cope
with multivariable system dynamics, system constraints,
and competing control objectives (Morari and Lee, 1999).
A key challenge in MPC applications arises from the im-
perfect knowledge of system dynamics. Plant-model mis-
match can largely restrict the MPC performance. Thus,
some form of model maintenance must often be performed
in MPC applications to ensure adequate closed-loop per-
formance (e.g., see (Mesbah et al., 2015)).

The ability to generate input-output data sets with high
information content is crucial for system identification.
Optimal experiment design enables systematic excitation
of system dynamics to obtain informative data sets for
model structure and/or parameter identification (e.g.,
(Pronzato, 2008)). However, model-based input design for
system identification and model-based control intrinsically
seek conflicting objectives. The former aims at exciting
the system dynamics to maximize the information content
of the input-output data, whereas in control the primary
objective is typically to suppress disturbances and pertur-
bations. For linear systems, model-based control strategies
have recently been proposed that integrate experiment
design with predictive control (Marafioti et al., 2013; Lars-
son et al., 2015; Heirung et al., 2015). In these control
strategies, some measure of the information content of
system outputs is incorporated into the optimal control
problem. Thus, the designed control inputs will have some
form of dual effect to enable generating informative closed-
loop data for model uncertainty reduction (Wittenmark,
1995). Larsson et al. (2013) presented a MPC approach
with integrated control-oriented experiment design, where

the intended control application of the model is explicitly
accounted for in input design (Hjalmarsson, 2005).

This paper addresses the problem of probabilistic model
uncertainty handling in the context of stochastic predictive
control (Mesbah, 2016) of nonlinear systems. A stochastic
MPC approach with integrated control-oriented experi-
ment design (iX-SNMPC) is presented that aims at not
only regulating the system dynamics, but also enhancing
the information content of the closed-loop data for control-
oriented model identification. The closed-loop data is used
for estimating the (posterior) probability distribution of
model parameters at each sampling instant in order to re-
duce model uncertainty. An experiment design chance con-
straint is incorporated into the stochastic optimal control
problem to ensure, in probability, that the identified model
satisfies an admissible control performance level (Rojas
et al., 2011). In contrast to standard experiment design
approaches that rely on the best estimate of model param-
eters (Gevers, 2005), the iX-SNMPC approach considers
the full probability distribution of the uncertain model
parameters in the input design problem. The performance
of the proposed approach is evaluated using a continuous
bioreactor benchmark (Agrawal et al., 1989).

Notation.

N denotes the set of natural numbers; N0 = N ∪ 0. P (·)
denotes the probability distribution function (pdf) of a
stochastic variable. P (·|z) denotes the pdf of a stochastic
variable conditioned on z. N (µ,Σ) denotes a Gaussian
distribution with mean µ and covariance Σ; N (x;µ,Σ)
denotes the value of the pdf at x. Pr [·] denotes probability.
E [·] and Var [·] denote expected value and variance,
respectively. det(·) and λi(·) denote the determinant and
the ith eigenvalue of a matrix, respectively.
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2. PROBLEM FORMULATION

Consider a discrete-time, nonlinear system

x(t) = f
(
x(t− 1), u(t− 1), θ0

)
, x(0) = x0, (1)

where t denotes the time index; x ∈ Rn denotes the
system states with initial conditions x0; u ∈ Rm denotes
the inputs; θ0 ∈ Rp denotes the true system parameters;
and f denotes the nonlinear state dynamics. The function
f is assumed to be of polynomial form. Nonpolynomial
functions can be transformed to polynomial-in-states form
if f is analytic with respect to x and separable with respect
to x and θ0 (Papachristodoulou and Prajna, 2005).

The model used for describing system (1) is subject to
probabilistic uncertainty arising from imperfect knowledge
of the system parameters θ0. According to the prediction
error identification framework, the identified model pa-

rameters {θ̂i}pi=1 are independently normally distributed,

that is θ̂ ∼ N (θ0,Pθ) with Pθ being the parameter covari-
ance matrix (Ljung, 1999).

The system inputs are subject to hard constraints

u(t) ∈ U , {Huu(t) ≤ du} ,
where Hu ∈ Rs×m, du ∈ Rs, and s ∈ N is the number of
input constraints. The states are constrained as

Xi , {xi(t) ∈ R | cixi + di ≤ 0}
with ci ∈ R and di ∈ R being constants. To effectively han-
dle state constraints in the presence of the (unbounded)
probabilistic model uncertainty, the state constraints are
replaced with individual chance constraints

Pr [xi(t) ∈ Xi] ≥ βi, ∀ i = 1, . . . , n,

where βi ∈ (0, 1) is the lower bound for the probability
level that each state chance constraint must be satisfied.

The goal of this work is to develop a stochastic predictive
control approach with integrated control-oriented experi-
ment design capability for the nonlinear system (1). The
optimal control inputs should serve two purposes: (i) reg-
ulate the system dynamics in terms of the defined control
objectives, and (ii) excite the system dynamics such that
the closed-loop data can be used for identifying a model
that ensures achieving a prescribed control performance
in probability (due to model uncertainty). This work only
addresses parametric model uncertainty, that is, the un-

certainty associated with θ̂. In what follows, a model of

system (1) is represented by the parameter vector θ̂ ∈ Rp.

Control-oriented experiment design involves defining an
application set Ψapp (θ), which consists of all system
models that result in admissible control performance. The
application set is defined by

Ψapp (θ) =

{
θ : Vapp (θ) ≤ 1

γ

}
,

where Vapp (θ) is an application cost function that quan-
tifies the control performance degradation due to plant-
model mismatch (i.e., the discrepancy between θ0 and
θ). γ > 0 is an application specific, user-defined bound
based on which the control-oriented adequacy of a model is
defined. An identified model would be considered adequate
if Vapp (θ) < 1/γ.

The objective of control-oriented experiment design is to
identify a system model that lies in the application set

Ψapp (θ), that is, θ̂ ∈ Ψapp (θ) (Rojas et al., 2011). A
key challenge in experiment design arises from the fact

that the knowledge of model parameters θ̂, on which the

experiment design relies, is subject to uncertainty (i.e., θ̂ ∼
N (θ0,Pθ)). Hence, due to the probabilistic uncertainty

associated with the identified parameters θ̂, the control-

oriented input design requirement θ̂ ∈ Ψapp (θ) can only
be satisfied in probability

Pr[θ̂ ∈ Ψapp (θ)] ≥ 1− ε, (2)

where ε ∈ (0, 1).

The chance constraint (2) represents the requirement
for control-oriented experiment design, and is used to
formulate the proposed iX-SNMPC approach. Under full-
state feedback, the iX-SNMPC approach involves solving
the following stochastic optimal control problem at every
sampling instant tk

π∗ , arg min
π

J [π, x(tk)] (3a)

s.t.: x̄(t) = f(x̄(t− 1), u(t− 1), θ̂), (3b)

∀ t ∈ [tk tk+N ]

Pr [x̄i(t) ∈ Xi] ≥ βi, ∀ i = 1, . . . , n (3c)

∀ t ∈ [tk tk+N ]

u(t) ∈ U, ∀ t ∈ [tk tk+N ] (3d)

Pr[θ̂ ∈ Ψapp (θ)] ≥ 1− ε (3e)

θ̂ ∼ N (θ0,Pθ) (3f)

x̄(tk) = x(tk), (3g)

where π , [u(tk), . . . , u(tk+N )]> denotes the control
policy; N is the prediction horizon; and J [π, x(tk)] denotes
a general cost function that can be defined to shape the
pdf of states either in terms of their full distributions
(e.g., (Buehler et al., 2016)) or their statistics (e.g., (Mes-
bah et al., 2014)). The optimal solution to the stochastic
optimal control problem (3) is denoted by π∗. The iX-
SNMPC is implemented in a receding-horizon manner,
which implies that at time tk only the optimal inputs
u∗(tk) are applied to system (1). The stochastic optimal
control problem (3) is subject to state chance constraints
to ensure state constraint satisfaction in the presence of
probabilistic model uncertainty. In addition, the experi-
ment design chance constraint (3e) ensures that a system
model identified from the closed-loop data can guarantee
an admissible control performance in a probabilistic sense.

There are several challenges associated with deriving a
tractable surrogate for (3). The first challenge is to define
a suitable control-oriented application set Ψapp (θ). The
application set requires the knowledge of the true system.
However, the true system is generally unknown. As is a
common practice in experiment design, a system model
based on the best estimates of parameters can be used
to construct the application set (Larsson, 2011). This
approach, however, cannot account for the effects of model
uncertainty. In this paper, the probabilistic description of
parametric uncertainties is considered in evaluating the
experiment design chance constraint (3e). The generalized
polynomial chaos (gPC) framework (Xiu and Karniadakis,
2002) is used for uncertainty propagation. The second
challenge in solving (3) lies in obtaining a tractable,
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deterministic surrogate for (3e). In this work, the Chernoff
relaxation is used to derive an analytic expression for (3e)
(Nemirovski and Shapiro, 2006).

3. IX-SNMPC APPROACH

This section describes the methods adopted to obtain a
computationally tractable surrogate for (3).

3.1 Application Cost Function

The application cost function Vapp(θ) provides a measure
for the control performance degradation due to plant-
model mismatch. Vapp(θ) is defined in terms of the dif-
ference between the measured system states when the
controller is designed using the true parameter values
θ0 and when the controller is designed using perturbed
parameters θ (Ebadat et al., 2014)

Vapp (θ) ,
1

M

M∑
t=1

‖ x (t, θ0)− x(t, θ) ‖2, (4)

where M is the number of measurements. The application
cost function Vapp (θ) has its minimum value at 0 when
θ = θ0. This implies that Vapp (θ0) = V ′app (θ0) = 0.

To obtain a convex surrogate for the experiment design
constraint (2), this paper considers a second-order approx-
imation of the cost function Vapp (θ) (Larsson, 2011)

Vapp (θ) ≈ Vapp (θ0) + V ′app (θ0) (θ − θ0)

+
1

2
(θ − θ0)

>
V ′′app (θ0) (θ − θ0)

=
1

2
(θ − θ0)

>
V ′′app (θ0) (θ − θ0) ,

(5)

where the second derivative V ′′app (θ0) can be approximated
by the Hessian matrix of the system states (Ebadat et al.,
2014). Notice that the application cost function and its
derivatives are dependent on the true parameters θ0, which
are unknown. In this work, the pdfs of the estimated

parameters θ̂ are used to represent the unknown true
parameters θ0.

Using the approximation (5), the control-oriented experi-
ment design chance constraint (2) takes the form

Pr

[
1

2
(θ̂ − θ0)>V ′′app(θ̂ − θ0) ≥ 1

γ

]
≤ ε. (6)

Next, a convex relaxation for (6) is discussed.

3.2 Approximation of the Experiment Design Chance
Constraint

Inspired by the analysis provided in (Rojas et al., 2011)
on chance constrained input design, this work uses the
Chernoff relaxation (Nemirovski and Shapiro, 2006) to
obtain a computationally tractable surrogate for (6). The
Chernoff bound on (6) is derived as

Pr

[
1

2
(θ̂ − θ0)>V ′′app(θ̂ − θ0) ≥ 1

γ

]
= Pr

[
z>P(t)−

>
2 V ′′appP(t)−

1
2 z − 2

γ
≥ 0

]
(7a)

= Pr

[
exp

( p∑
i=1

1

ρ
λi

(
P(t)−

>
2 V ′′appP(t)−

1
2

)
z̃2
i −

2

γρ

)
≥ 1

]
(7b)

≤ E

[
exp

( p∑
i=1

1

ρ
λi

(
P(t)−>/2V ′′appP(t)−1/2

)
z̃2
i −

2

γρ

)]
,

(7c)

where z , P(t)−1/2(θ̂−θ0) ∼ N (0, I) with I being a p×p
Identity matrix; z̃ ∼ N (0, I) is a random vector that is an
algebraic function of z; and ρ ≥ 0 is an arbitrary constant.
Notice that the inequality (7c) follows from the Markov’s
bound (i.e., E [υ] = αPr [υ ≥ α] for a nonnegative random
variable υ and a constant α ≥ 0).

As shown in (Rojas et al., 2011), the following expression
holds for a scalar z̄ ∼ N (0, 1)

E
[
exp

(
ρz̄2
)]

=
1√

1− 2ρ
, ∀ ρ ∈

(
−∞, 1

2

)
. (8)

Now, (7c) and (8) can be combined to obtain

Pr

[
1

2
(θ̂ − θ0)>V ′′app (θ) (θ̂ − θ0) ≥ 1

γ

]
≤ exp

(
− 2

γρ

)
1√

det
(
I − 2

ρP(t)−
>
2 V ′′appP(t)−

1
2

) ,
(9)

where ρ ∈
(

2λmax

(
P(t)−

>
2 V ′′appP(t)−

1
2

)
,∞
)

. From (9)

the sufficient condition for the control-oriented experiment
design chance constraint (6) to hold is

exp

(
− 2

γρ

)
1√

det
(
I − 2

ρP(t)−
>
2 V ′′appP(t)−

1
2

) ≤ ε,
which can be rewritten in the convex form

− 2

γ
− ρ

2
ln det

(
I − 2

ρ
P(t)−

>
2 V ′′appP(t)−

1
2

)
≤ ρ ln ε (10)

with ρ > 2λmax

(
P(t)

>
2 V ′′appP(t)

1
2

)
.

Expression (10) provides a deterministic surrogate for (6).
The true parameters θ0 will be replaced with the estimated

pdf of parameters (i.e., θ̂ ∼ N (θ0,Pθ)). Assuming that
the Cramér-Rao bound holds, the parameter variance-
covariance matrix P(t) is defined as the inverse of the
Fisher information matrix I(t)

I(t) =

t∑
k=0

(
∂x̄(k)

∂θ

)>(
∂x̄(k)

∂θ

)
, (11)

where the sensitivities are given by

d

dt

∂x̄(t)

∂θ
=
∂f

∂x̄

∂x̄(t)

∂θ
+
∂f

∂θ
.
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3.3 Uncertainty Propagation using Polynomial Chaos

The generalized polynomial chaos framework (Xiu and
Karniadakis, 2002) is used for efficient propagation of

the probabilistic modeling uncertainties θ̂. The parametric
uncertainties are defined in terms of the standard ran-
dom variables ξ ∈ Rp. The elements {ξj}pj=1 are inde-

pendently distributed with known pdfs P (ξj). Further,
ξj ∈ L2 {Ω,F ,P}, where L2 {·} is the Hilbert space of ξj
on a probability triple (Ω,F ,P) and E

[
ξ2
j

]
<∞.

The gPC framework allows for approximating a stochastic
variable ψ (ξ) as a series expansion of polynomial basis
functions

ψ (ξ) ≈ ψ̂ (ξ) =

l∑
j=0

ajϕj (ξ) = aΛ> (ξ) , (12)

where a , [a0, . . . , al] are the expansion coefficients;

Λ (ξ) , [ϕ0 (ξ) , . . . , ϕl (ξ)] are the orthogonal basis func-
tions from the Wiener-Askey scheme of polynomials with

maximum degree m with respect to ξ; and l + 1 = (p+m)!
p!m!

denotes the number of terms in the expansion. The poly-
nomial basis functions ϕj (ξ) are defined on the support
space of ξ. The orthogonality of the basis functions implies
〈ϕi (ξ) , ϕj (ξ)〉 =

〈
ϕ2
i (ξ)

〉
δij =

∫
Ω
ϕi (ξ)ϕj (ξ)P (ξ) dξ,

where 〈, 〉 denotes the inner product induced by P (ξ) and
δij is the Kronecker delta function. The orthogonal prop-
erty of the basis functions enables efficient computation

of the moments of the stochastic variable ψ̂ (ξ) using the
coefficients a.

In a stochastic model of system (1), each state x̄i is
approximated by a polynomial chaos expansion (12). The
model equations for each approximated stochastic state x̄i
is written as

l∑
j=0

x̃i,j(t)ϕj (ξ) = (13)

fi

(
x̃1(t− 1)Λ> (ξ) , . . . , θ̃1Λ> (ξ) , . . . , u(t− 1)

)
,

where x̃i and θ̃i denote the coefficients of the polynomial

chaos expansion for the states x̄i and parameters θ̂i. The
coefficients x̃i and θ̃i in (13) are determined using the
Galerkin projection method (Ghanem and Spanos, 1991).
The application of the Galerkin projection method to (13)
yields a set of closed-form ordinary differential equations

x̃i(t) = f̃i(x̃1(t− 1), . . . , θ̃1, . . . , u(t− 1)) (14)

for describing the dynamics of the coefficients of the
expansions for each stochastic state x̄i.

3.4 Deterministic Surrogate for iX-SNMPC

The results presented in the preceding subsections are used
to obtain a deterministic surrogate for the stochastic opti-
mal control problem (3). The application cost function (4)
is used to define the control-oriented experiment design
chance constraint (6), which is approximated by (10) via
Chernoff relaxation. The probabilistic uncertainties in the
system model are propagated using the gPC framework,
which results in the system description (14). The indi-
vidual chance constraints on the states are approximated

using the Cantelli-Chebyshev inequality (Marshall and
Olkin, 1979); see also (Mesbah and Streif, 2015).

The deterministic surrogate for (3) takes the form

π∗ , arg min
π

J [π, x(tk)] , (15a)

s.t.: x̃i(t) = f̃i

(
x̃1(t− 1), . . . , θ̃1, . . . , u(t− 1)

)
, (15b)

∀ t ∈ [tk tk+N ] , ∀i = 1, . . . , n

u (t) ∈ U, ∀ t ∈ [tk tk+N ] (15c)

ciE [x̂i] ≤ di − hi

√
Var [x̂i]

(
1− βi
βi

)
, (15d)

∀ t ∈ [tk tk+N ] , ∀i = 1, . . . , n

− 2

γ
− ρ

2
ln det

(
I − 2

ρ
P(tk+N )−

>
2 V ′′app (15e)

P(tk+N )−
1
2

)
≤ ρ ln ε

θ̂ ∼ N (θ0,Pθ) (15f)

x̄(tk) = x(tk), (15g)

where x̂i denotes the polynomial chaos approximation of
the ith state. At every sampling time t = tk, the optimal
control problem (15) is solved over the prediction horizon
[tk tk+N ], and only the first set of the optimal inputs,
u∗(tk), is applied to system (1).

The receding-horizon implementation of the iX-SNMPC
approach requires the knowledge of the pdf of the model

parameters (i.e., θ̂ ∼ N (θ0,Pθ)) at every sampling time
tk. Further, the system model should be adapted based
on the estimated pdf of parameters at every tk to im-
prove the accuracy of the model predictions in the con-
troller. To this end, the iX-SNMPC approach is imple-
mented in conjunction with a gPC-based histogram filter
(gPC HF) (Bavdekar and Mesbah, 2016), which computes
the parameter pdfs conditioned on the measured system

states. Thus, N (θ0,Pθ) is in fact the posterior pdf of θ̂
obtained using the gPC HF at every sampling instant tk.

4. CASE STUDY: A CONTINUOUS BIOREACTOR

The proposed iX-SNMPC approach is applied to a bench-
mark continuous bioreactor (Agrawal et al., 1989). The
system dynamics are described by

Ẋ = −DX + µX

Ṡ = D (Sf − S)− 1

YX|S
X

Ṗ = −DP + (αµ+ β)X,

where X is the biomass concentration; S is the substrate
concentration; P is the product concentration; the dilution
rate D and the inlet substrate concentration Sf are the
manipulated inputs; YX|S is the cell biomass yield; α and
β are the yield parameters for P ; and µ denotes the specific
growth rate of the biomass

µ =
µm

(
1− P

Pm

)
S

Km + S + S2

Ki

with µm being the maximum specific growth rate. The
system parameters are given in (Agrawal et al., 1989). The
system states are measured at regular sampling intervals
of t = 0.25 hr, and are corrupted by zero-mean Gaussian
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(a) iX-SNMPC in conjuction with gPC HF

(b) NMPC-EKF

Fig. 1. The control-oriented application set and parameter
uncertainty set at t = 5 hr. The model parameters
are estimated based on the closed-loop data when the
iX-SNMPC approach in conjunction with the gPC
histogram filter and the EKF-NMPC approach are
used.

measurement noise with covariance R. The parameters
µm, YX|S , and β have a normal distribution, as given in
Table 1. The initial conditions of the system are x(0) =

[7.038 2.404 24.87]
>

.

The control objective in the iX-SNMPC approach is to
regulate the process around a desired product concentra-
tion P̄ , while ensuring that the system model guarantees
adequate control performance. The cost function is defined
as

J =

tk+N∑
t=tk

(
E [P (t)]− P̄

)2
+ ωVar [P (t)] ,

where ω = 0.4 is a constant weight. The prediction
horizon and control horizon are equal and chosen as 6 hr.
Hard constraints are imposed on the inputs, i.e., 0.013 ≤
D ≤ 0.64 and 0.5 ≤ Sf ≤ 50. In addition, product
concentration P should remain below a threshold

Pr [P > 26.5] < 0.1.

In the control-oriented experiment design chance con-
straint (2), the application bound and the admissible prob-
ability of constraint violation are defined as γ = 100 and
ε = 0.05, respectively. The pdfs of the uncertain model

Table 1. Bioreactor system uncertainties

Variable pdf

µm N
(
0.479, 8.1× 10−5

)
YX|S N

(
0.407, 8.1× 10−5

)
β N

(
0.199, 8.1× 10−5

)
R 10−6× diag[1 30.25 25]

parameters are updated using the gPC HF at every sam-
pling time. The performance of the iX-SNMPC approach
is compared to that of a nonlinear model predictive control
(NMPC) approach combined with extended Kalman filter
(EKF) for parameter estimation. The experiment design
constraint is not included in the EKF-NMPC approach.
Identical settings are considered for the two MPC ap-
proaches.

Fig. 1a shows the uncertainty set associated with the
parameters β and µm at t = 5 hr. The parameters are
identified based on the closed-loop data obtained when
the iX-SNMPC approach is used. The parameter uncer-
tainty set lies in the control-oriented application set. This
indicates that the identified model guarantees the attain-
ment of an admissible control performance with the least
probability level 95 %. The latter (user-specified) proba-
bility level is associated with the parameter uncertainty
set, and represents the least probability that the true
parameters θ0 lie in the uncertainty set. The fact that the
iX-SNMPC approach ensures satisfactory control-oriented
model identification in the presence of probabilistic model
uncertainty results from inclusion of the experiment design
chance constraint (2) into the stochastic optimal control
problem. It was observed that the application set shrinks
over time when the iX-SNMPC is used (not shown here).
Fig. 1b shows the parameter uncertainty set when the
EKF-NMPC approach is used. The size of the parameter
uncertainty set is greater than that obtained using the pro-
posed iX-SNMPC. This is attributed to model uncertainty
since the control inputs in the EKF-NMPC approach are
not tasked to excite the system for system identification
and, consequently model uncertainty reduction.

The evolution of the estimated pdfs of µm using the gPC
HF in the iX-SNMPC approach is shown in Fig. 2a. The
figure indicates that the parameter estimates converge to

(a) iX-SNMPC approach in conjunction with gPC histogram filter

(b) EKF-NMPC approach

Fig. 2. Evolution of the pdfs of µm estimated based on the
closed-loop data.
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the true value of µm, while the estimated pdfs approach
a Dirac-delta function after approximately t = 6 hr. The
latter suggests reduction in the variance of the estimated
parameters. In the case of the EKF-NMPC approach,
there exists a small bias in the mean of the identified
parameters. In contrast to the case of iX-SNMPC, the
identified parameters do not monotonically converge to the
true parameter value (see Fig. 2b). This results from the
inability of the NMPC approach to excite the system for
adequate system identification.

5. CONCLUSIONS

In this work, a stochastic model predictive control ap-
proach with integrated experiment design is presented for
nonlinear systems with probabilistic parametric uncertain-
ties. The goal of the proposed stochastic predictive control
approach is twofold: (i) to enable identifying a control-
oriented system model using the closed-loop data, and
(ii) to regulate the system while accounting for model
uncertainties. A deterministic surrogate is derived for the
presented stochastic optimal control problem with control-
oriented experiment design capability. The closed-loop
simulation results for a continuous bioreactor benchmark
demonstrate the effectiveness of the proposed approach in
terms of control-oriented model adaptation using closed-
loop data.
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