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Abstract: Optimal control problems are found in state and parameter estimation, experimental
design, and model-based control for complex dynamical systems. Parsimonious input parameter-
ization is an approach for obtaining solutions to these problems, which comprises two tasks: the
first corresponds to the generation of arc sequences and the second consists in the computation of
optimal values of a small number of decision variables for each sequence. This paper proposes an
adaptive method for global solutions to single-input optimal control problems that accounts for
the mismatch between the true system and its model by using Gaussian processes to represent
the mismatch in the cost and constraints for an arc sequence. This adaptive approach converges
to the global solution for the true system and ensures constraint satisfaction with a prespecified
probability. The proposed approach is illustrated by a simulation example of a reaction system.
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1. INTRODUCTION

Optimal control problems (OCPs) are extensively applied
for optimal design, analysis, and operation of various com-
plex dynamical systems. Efficient methods for OCPs are
useful for several tasks in engineering applications, such
as optimization-based state and parameter estimation, ex-
perimental design, and model-based control. The decision
variables in OCPs represent time-varying functions over a
time interval such that a cost is optimized subject to con-
straints. OCPs can be complex to solve since they involve
infinitely many decision variables, and there can exist both
terminal constraints at the end of the time interval and path
constraints along the trajectory (Bryson and Ho, 1975).

Direct methods are a popular approach for OCPs wherein
the time-varying functions represented by decision vari-
ables are discretized to approximate the original infinite-
dimensional problem as a finite-dimensional one (Teo et al.,
1991; Biegler et al., 2002). However, a general challenge in
OCPs is that one cannot obtain a model that represents
exactly the true system where the solution to the OCP will
be implemented. This may result in suboptimal, or even
infeasible, performance when the optimal solution for the
model is applied to the true system (Yip and Marlin, 2003).
The main approaches to prevent these effects of model
mismatch are robust, stochastic, and adaptive optimiza-
tion (Chachuat et al., 2009). Robust optimization provides
performance guarantees, but can result in conservative so-
lutions (Mönnigmann and Marquardt, 2003). Stochastic op-
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timization is less conservative, but can be computationally
costly due to the representation of probability (Mesbah,
2016). Adaptive optimization uses measurements to en-
force optimality of the true system, but requires repetition
(Krstić and Wang, 2000). Moreover, all these approaches
are impaired by a large number of decision variables.

The number of decision variables in OCPs can be reduced
via a parsimonious input parameterization (Rodrigues and
Bonvin, 2020). In this approach, (i) all the arcs that can
occur in the solution to an OCP are identified, (ii) a finite
set of plausible arc sequences is generated, and (iii) each
sequence is described by a small number of decision vari-
ables. Then, for a given arc sequence, the optimal values
of these decision variables can be computed via numerical
optimization, which only requires numerical integration of
the dynamic equations of the states and adjoint variables
for each value of the decision variables. Another main ad-
vantage, shown by Rodrigues and Mesbah (2022) and ap-
plied to Bayesian optimal experiment design by Rodrigues
et al. (2022), is that the small number of decision variables
enables efficient computation of globally optimal values of
the decision variables for each arc sequence.

An approach based on parsimonious input parameteriza-
tion can enforce convergence to the global optimum for
the model, but not for the true system; thus, it must be
extended to deal with model mismatch. The small number
of decision variables enabled by the parsimonious input
parameterization is useful for addressing model mismatch,
as explained next. To this end, alternate parameter esti-
mation and optimization is a typical adaptive approach,
but may fail to converge to the optimum of the true sys-
tem (Forbes et al., 1994). On the other hand, modifier
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adaptation is an adaptive approach that satisfies the op-
timality conditions of the true system upon convergence
by using measurements to update modifiers that are added
to the cost and constraints (Marchetti et al., 2009). This
approach benefits from a small number of decision variables
since it requires explicit estimation of the gradients of the
cost and constraints of the true system with respect to
the decision variables, which is sensitive to measurement
noise (Bunin et al., 2013). However, modifier adaptation
either provides no guarantees of global and feasible-side
convergence, or provides them at the price of relatively
slow convergence (Marchetti et al., 2017). This motivates
a representation of the mismatch between the true system
and the model by updating distributions rather than mod-
ifiers for the cost and constraints. In particular, Gaussian
processes can be used to represent this mismatch since they
deal effectively with measurement noise and can provide
probabilistic bounds (Ferreira et al., 2018; Rasmussen and
Williams, 2006). After each update, the modified model
can be used again for optimization. The smaller number
of decision variables provided by the parsimonious input
parameterization facilitates the whole procedure. In fact,
an approach based on parsimonious input parameterization
and modifier adaptation has already been applied to data-
driven adaptive optimal control of cold atmospheric plas-
mas by Rodrigues et al. (2023). However, the parsimonious
input parameterization combined with Gaussian processes
to deal with model mismatch has not been presented yet.

This paper aims to extend the parsimonious input pa-
rameterization approach for adaptive global solutions to
OCPs for nonlinear dynamical systems subject to model
mismatch, with particular emphasis on the case of single-
input OCPs. The main contribution of this paper is an
adaptive method for determining the optimal solution to
the OCP in the presence of model mismatch via Gaussian
processes. By using the proposed iterative approach to
update the Gaussian processes, it is shown that the true
system is expected to converge to its global optimum with-
out constraint violation. Finally, the proposed approach is
illustrated via a simulation example.

2. PROBLEM STATEMENT

Consider the general class of OCPs formulated as

min
u(·),tf

J
(
u(·), tf

)
= φ

(
x(t1), . . . ,x(tT ), tf

)
, (1a)

s.t. T
(
u(·), tf

)
= ψ

(
x(t1), . . . ,x(tT ), tf

)
≤ 0nψ , (1b)

ẋ(t) = f
(
x(t),u(t)

)
, x(t0) = x0, (1c)

u ≤ u(t) ≤ u, h
(
x(t)

)
≤ 0nh , (1d)

where t0 is the initial time, t1 < . . . < tT are T times,
tf = tT ∈ [t0, tmax] is the finite final time with upper
bound tmax; u(t) is the nu-dimensional vector of piecewise-
continuous inputs for all t ∈ [t0, tf ) with nu-dimensional
vectors of lower and upper bounds u and u; x(t) is the nx-
dimensional vector of piecewise-continuously differentiable
states for all t ∈ [t0, tf ); f(x,u) is an nx-dimensional
vector function, smooth for all (x,u) ∈ Rnx × Rnu ; h(x)
is an nh-dimensional vector function, smooth for all x ∈
Rnx ; φ(X, t), ψ(X, t) are a scalar function and an nψ-
dimensional vector function, respectively, smooth for all
(X, t) ∈ RTnx × [t0, tmax]. We assume that h(1)(x,u) :=
∂h
∂x (x)f(x,u) depends explicitly on u.

The inputs that represent the solution to Problem (1) are
composed of several arcs. For each input uj , each arc can
be of type 1) bang-bang, which is determined by uj = uj or
uj = uj , 2) active-state constraint, which is determined by

h
(1)
k (x,u) = 0 for some k = 1, . . . , nh, or 3) singular, which

is determined by the dynamics given by f
(
x(t),u(t)

)
(Srini-

vasan et al., 2003; Rodrigues and Bonvin, 2020). Hence,
arc sequences can be formed from a finite number of arc
types. If only arc sequences with a number of arcs no larger
than some upper bound n̄a and without consecutive arcs
of the same type are considered plausible, then the number
of plausible sequences is also finite. Suppose that the bang-
bang arcs are denoted as 1L or 1U, depending on whether
they are determined by uj = uj or uj = uj , and note
that sequences with fewer than n̄a arcs are particular cases
of the sequences with n̄a arcs where some arcs vanish. In
many cases, one can reasonably assume that the solution
includes a relatively small number of arcs with n̄a between
3 and 5 since chattering solutions with arcs of infinitesimal
duration are not practically interesting even if these solu-
tions are globally optimal from a mathematical point of
view (Srinivasan et al., 2003; Rodrigues and Bonvin, 2019).

Parsimonious input parameterization effectively describes
the optimal inputs using only a few decision variables, in
contrast to an infinite number of variables in the original
OCP (Rodrigues and Bonvin, 2019, 2020). For a given plau-
sible arc sequence with ns+ 1 bang-bang and singular arcs,
the inputs are defined by the following decision variables:
the switching times t̄1, . . . , t̄ns to arcs of types 1 and 3,
the final time t̄ns+1 = tf , and the initial conditions of the
singular arcs (Xu and Antsaklis, 2004). The entry points
in arcs of type 2 are given by the nη-dimensional vector
η = (η1, . . . , ηnη ), but the switching to these arcs cannot
occur at arbitrary times since it depends on the states x.

The goal of this paper is to extend the parsimonious input
parameterization approach for solving OCPs formulated
as (1) to global optimality in the presence of mismatch
between the true system and the model. Although the pro-
posed approach can be generalized to OCPs with multiple
inputs u(t), the number of inputs affects the number of arc
sequences. For this reason, we consider OCPs with nu = 1,
that is, a single input u(t), without loss of generality, not
only for the sake of clarity, but also because the approach
is most efficient in this case. The proposed approach for
adaptive global optimality relies on a model of the system
to determine: (i) the globally optimal switching between
arcs for a given plausible arc sequence; and (ii) the sequence
that provides the globally optimal solution. Question (i) is
addressed by computing the globally optimal values of the
decision variables for the given arc sequence. For this, the
cost and constraints of the OCP for each arc sequence are
represented in terms of new decision variables, as shown in
Section 3. Once question (i) is addressed for each sequence,
question (ii) is trivially answered via parallel computing.
Lastly, for the sequence chosen to address question (ii), an
adaptive method is used to answer question (i) for the true
system rather than for the model, as shown in Section 4.

3. REFORMULATION OF THE OCP VIA
PARSIMONIOUS INPUT PARAMETERIZATION

For a given arc sequence, we describe the input in the ith
time interval [t̄i−1, t̄i), for i = 1, . . . , ns+ 1, by defining nz,i
new states and initial conditions for this interval as zi(t)
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and zi,0. One can then combine all the states into vectors
with a dimension nz := nx + nz,1 + . . .+ nz,ns+1

z(t) :=

x(t)T

[
z1(t)

...
zns+1(t)

]T
T

, (2)

with corresponding initial conditions z0.

The arc type determines the dimension and meaning of
the elements of zi(t), zi,0 and their effect on the input
u(t) given by the control law u(t) = c̃

(
z(t)

)
and on

the dynamics of zi(t) given by żi(t) = qi
(
x(t), zi(t)

)
.

For bang-bang arcs, zi(t), zi,0 are of dimension 0 and
c̃
(
z(t)

)
= u or c̃

(
z(t)

)
= u. For active-state constraint

arcs, zi(t), zi,0 are not needed and c̃
(
z(t)

)
is such that

h
(1)
k (x(t), c̃

(
z(t)

)
) = 0 for some k = 1, . . . , nh. For singular

arcs, assuming that the input is approximated by a linear

function, then zi(t) =
[
ũi(t)
p̃i(t)

]
, zi,0 =

[
u0
i
pi

]
are of dimension

2, where u0
i and pi are the initial value and derivative of

the input and ũi(t) is its value at time t, which implies

that c̃
(
z(t)

)
= ũi(t) and qi

(
x(t), zi(t)

)
=
[
p̃i(t)

0

]
. The

set {i : ith arc of u(·) is of type 3} is denoted as S, which
implies that nz,1 + . . .+ nz,ns+1 = 2|S|.
Then, upon eliminating input dependencies and rewriting
Problem (1) in terms of the extended states z, one obtains

χ̃
(
z(t1), . . . , z(tT ), tf

)
:=

[
φ̃
(
z(t1), . . . , z(tT ), tf

)
ψ̃
(
z(t1), . . . , z(tT ), tf

)] , (3)

with φ̃
(
z(t1), . . . , z(tT ), tf

)
:= φ

(
x(t1), . . . ,x(tT ), tf

)
and

ψ̃
(
z(t1), . . . , z(tT ), tf

)
defined similarly, and the dynamics

f̃
(
z(t)

)
:=

f
(
x(t), c̃

(
z(t)

))T [ q1(x(t),z1(t))

...
qns+1(x(t),zns+1(t))

]T
T

.(4)

Since the input parameters for the given arc sequence are
τ := (t̄1, . . . , t̄ns , tf , z1,0, . . . , zns+1,0), Problem (1) can be
reformulated in terms of these new decision variables as

min
τ

φ̂(τ ) := φ̃
(
z(t1), . . . , z(tT ), tf

)
, (5a)

s.t. ψ̂(τ ) := ψ̃
(
z(t1), . . . , z(tT ), tf

)
≤ 0nψ , (5b)

t̄i−1 ≤ t̄i, i = 1, . . . , ns + 1, (5c)

u ≤ u0
s ≤ u,

u ≤ u0
s + ps (t̄s − t̄s−1) ≤ u, s ∈ S, (5d)

ż(t) = f̃
(
z(t)

)
, z(t0) = z0, (5e)

which is convenient for numerical optimization since there
are only N := ns+1+nz,1 +. . .+nz,ns+1 decision variables.

For each entry point η̂j(τ ) := ηj , there exists k = 1, . . . , nh
such that h̃k

(
z(t)

)
≤ 0 becomes active at t = η̂j(τ ).

4. ADAPTIVE APPROACH FOR A REFORMULATED
OCP USING GAUSSIAN PROCESS REGRESSION

4.1 Gaussian processes to adapt cost and constraints

The main goal of this paper is to develop an adaptive OCP
approach that converges to the global optimum of the true
system despite the mismatch between the true system and
its model. Hence, we (i) estimate the mismatch between
the cost and constraint functions for the true system and
the ones for the model and (ii) use this estimation for

an adaptive algorithm to solve the OCP (5) to global
optimality for the true system, as shown in Algorithm 1.

Each cost and constraint function is expressed for the true
system and the model as

χ̂p(τ ) := χ̃
(
zp(t1), . . . , zp(tT ), tf

)
, (6)

χ̂m(τ ) := χ̃
(
zm(t1), . . . , zm(tT ), tf

)
, (7)

where zp(t) and zm(t) are the states z(t) that correspond to
τ in the true system and the model, respectively. Suppose
that, at each iteration k of Algorithm 1, data for χ̂p(τ ) are
available in the neighborhood of a set of points τ1, . . . , τk
evaluated by the algorithm. More precisely, this occurs not
only for the nominal points τ 0

i = τi, for i = 1, . . . , k,

but also for the auxiliary points τ ji , for i = 1, . . . , k and
j = 1, . . . , N , where τ1 is the global model optimum for the
OCP (5). An efficient method for solving single-input OCPs
reformulated as (5) has been presented by Rodrigues and
Mesbah (2022). Hence, the goal is to describe the mismatch
between the functions χ̂p(τ ) and χ̂m(τ ) from measurements

of χ̂p(τ ji ) and knowledge of χ̂m(τ ji ), for i = 1, . . . , k and
j = 0, . . . , N . For this, we use Gaussian process regression
since it provides a statistical description of the mismatch
in the cost and constraint functions in terms of probability
distributions (Rasmussen and Williams, 2006).

Suppose that the unknown function

gχ∗(τ ) = χ̂p(τ )− χ̂m(τ ), (8)

is sampled at τ = τ ji , for i = 1, . . . , k and j = 0, . . . , N , as

yχj (i) = gχ∗(τ ji ) + eχj (i), i = 1, . . . , k, j = 0, . . . , N, (9)

where yχj (i) is the measurement of gχ∗(τ ji ) with noise eχj (i).

Based on the data yχj (i), the mismatch model

yχj (i) = gχk (τ ji ) + eχj (i), i = 1, . . . , k, j = 0, . . . , N, (10)

and a prior distribution of the function gχk (τ ) that rep-
resents the mismatch between χ̂p(τ ) and χ̂m(τ ) in the
domain D, we aim to estimate the probability density
function (pdf) for the posterior distribution of gχk (τ ). To

this end, upon defining gχk (i) :=
[
gχk (τ 0

i ) · · · gχk (τNi )
]T

,

yχ(i) :=
[
yχ0 (i) · · · yχN (i)

]T
, eχ(i) :=

[
eχ0 (i) · · · eχN (i)

]T
,

yχ(i) = gχk (i) + eχ(i), i = 1, . . . , k, (11)

and, upon defining gχk :=
[
gχk (1)T · · · gχk (k)T

]T
, yχk :=[

yχ(1)T · · · yχ(k)T
]T

, eχk :=
[
eχ(1)T · · · eχ(k)T

]T
,

yχk = gχk + eχk . (12)

Assuming that the noise realizations in eχk for the points

Tk = (t1
k, . . . , t

k(N+1)
k ) := (τ 0

1 , . . . , τ
N
1 , . . . , τ 0

k , . . . , τ
N
k ) are

independent and identically distributed (i.i.d.) and drawn
from a zero-mean normal distribution with variance σ2

χ, the
likelihood function is

p(yχk |g
χ
k ) = f(yχk |g

χ
k , σ

2
χIk(N+1)), (13)

where f(x|x̄,Σx) is the pdf of a multivariate normal distri-
bution with mean x̄ and covariance Σx.

Also, assume that the prior distribution of gχk (τ ) is given
by a zero-mean squared exponential kernel, thus it follows
a normal distribution with pdf

p(gχk |η) = f(gχk |0,K
χ
k (η)), (14)

with covariance Kχ
k (τ , τ ′|η) = c exp

(
− ||τ−τ

′||2
2λ2

)
, which

depends on some hyperparameters η = (c, λ), where c ≥ 0,
λ ≥ 0 represent the noise level and the length scale.
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Hence, the posterior distribution of gχk (τ ) also follows a
normal distribution with pdf

p(gχk |y
χ
k ) = f(gχk |ḡ

χ
k ,Σ

χ
g,k), (15)

where

ḡχk (τ ) = kχk (τ )T
(
Σχ

y,k

)−1

yχk , (16)

Σχg,k(τ , τ ′) = Kχ
k (τ , τ ′|η̂χk )− kχk (τ )T

(
Σχ

y,k

)−1

kχk (τ ′),(17)

with

(kχk (τ ))
i

= Kχ
k (tik, τ |η̂

χ
k ), (18)(

Σχ
y,k

)
i,j

= σ2
χ

(
Ik(N+1)

)
i,j

+Kχ
k (tik, t

j
k|η̂

χ
k ), (19)

and the hyperparameters η̂χk computed as in Appendix A.

This allows us to obtain probabilistic bounds for the
function gχ∗(τ ) since ḡχk (τ ) + rkσ

χ
g,k(τ ), with σχg,k(τ ) :=√

Σχg,k(τ , τ ), is an upper bound for gχk (τ ) with a prob-

ability that depends on rk. To this end, we assume that
the unknown function gχ∗(τ ) is sampled from the prior
distribution of gχk (τ ), which is a standard assumption in
Gaussian process optimization (Srinivas et al., 2012). More
precisely, there is a probability Φ(rk) that gχk (τ ) ≤ ḡχk (τ )+
rkσ

χ
g,k(τ ), where Φ is the cumulative distribution function

of the standard normal distribution. For example, the prob-
ability that gχk (τ ) ≤ ḡχk (τ ) + 2σχg,k(τ ) is more than 97.5%.

Since gχk (τ ) is an estimate of the mismatch χ̂p(τ )− χ̂m(τ ),
χ̂mk (τ ) := χ̂m(τ ) + ḡχk (τ ) + rkσ

χ
g,k(τ ) represents an upper

bound for χ̂p(τ ) with a probability Φ(rk).

4.2 Adaptive OCP approach

This idea can be used to obtain upper bounds for the cost

and constraint functions φ̂p(τ ) and ψ̂pj (τ ) of the OCP (5)
for the true system. Hence, based on the data available in
the neighborhood of the set of points τ1, . . . , τk at each
iteration k of Algorithm 1, the following OCP is solved:

τk+1 := arg min
τ

φ̂m(τ ) + ḡφk (τ ) + rkσ
φ
g,k(τ ), (20a)

s.t. ψ̂mj (τ ) + ḡ
ψj
k (τ ) + rkσ

ψj
g,k(τ ) ≤ 0,

j = 1, . . . , nψ, (20b)

t̄i−1 ≤ t̄i, i = 1, . . . , ns + 1, (20c)

u ≤ u0
s ≤ u,

u ≤ u0
s + ps (t̄s − t̄s−1) ≤ u, s ∈ S, (20d)

żm(t) = f̃
(
zm(t)

)
, zm(t0) = z0. (20e)

The following theorem shows that, under some assumptions
about the quality of the model used for the OCPs (5) and
(20), the true system converges to its global optimum with
a prespecified probability of constraint satisfaction.

Theorem 1. Suppose that the OCP (20) is solved at each
iteration k of Algorithm 1. Assuming that the optimal arc
sequence is the same for the model and the true system,
gχ∗(τ ) is sampled from the prior distribution of gχk (τ ), and
the points τ1, . . . , τk are in the basin of attraction of a
global optimum of the OCP (5) for the true system, then:

(1) Each constraint ψ̂pj (τk+1) ≤ 0, for j = 1, . . . , nψ, is

satisfied with a prespecified probability Φ(rk).
(2) The algorithm converges to a single point τ∞ that is

a global optimum of the OCP (5) for the true system.

Algorithm 1: Adaptive algorithm to solve the OCP (5)
to global optimality for the true system in the presence of
mismatch between the true system and its model.

1 Compute τ1, the global solution to the OCP (5) for the
model, and set the iteration k ← 1.

2 For each cost and constraint function, sample the mis-
match gχ∗(τ ) at the nominal point τ = τ 0

k = τk and

at the auxiliary points τ = τ jk , for j = 1, . . . , N , by
measuring yχj (k), for j = 0, . . . , N .

3 Use yχk =
[
yχ0 (1) · · · yχN (1) · · · yχ0 (k) · · · yχN (k)

]T
and

Tk = (t1
k, . . . , t

k(N+1)
k ) = (τ 0

1 , . . . , τ
N
1 , . . . , τ 0

k , . . . , τ
N
k )

to compute the hyperparameters η̂χk according to Ap-
pendix A and to update the mean ḡχk (τ ) and standard

deviation σχg,k(τ ) :=
√

Σχg,k(τ , τ ) of each Gaussian pro-

cess gχk (τ ) according to (16) and (17).
4 Compute τk+1, the solution to OCP (20).
5 Set the iteration k ← k + 1 and return to Step 2.

Proof. Since the OCP (20) ensures that ψ̂mj (τk+1) +

ḡ
ψj
k (τk+1) + rkσ

ψj
g,k(τk+1) ≤ 0, for j = 1, . . . , nψ, and

ψ̂mj (τ ) + ḡ
ψj
k (τ ) + rkσ

ψj
g,k(τ ) represents an upper bound for

ψ̂pj (τ ) with a probability Φ(rk) given that gχ∗(τ ) is sampled

from the prior distribution of gχk (τ ), condition (1) holds.

To prove condition (2), we first prove that, if Algorithm
1 converges to a single point τ∞, then τ∞ is a global
optimum of the OCP (5) for the true system. Then, assume
that Algorithm 1 converges to a single point τ∞. This
implies that the algorithm evaluates the cost and constraint
functions χ̂p an arbitrarily large number of times, not only
for τ∞, but also for the auxiliary points τ j∞, for j =
1, . . . , N . From the properties of Gaussian processes, this

implies that ḡχ∞(τ∞) = gχ∗(τ∞),
∂ḡχ∞
∂τ (τ∞) = ∂gχ∗

∂τ (τ∞),

σχg,∞(τ∞) = 0,
∂σχg,∞
∂τ (τ∞) = 0, which in turn implies that

χ̂m∞(τ∞) = χ̂p(τ∞),
∂χ̂m∞
∂τ (τ∞) = ∂χ̂p

∂τ (τ∞), and τ∞ is a
KKT point of the OCP (20) for k →∞ if and only if τ∞ is
a KKT point of the OCP (5) for the true system. However,
since τ∞ is the solution to the OCP (20) for k → ∞, τ∞
is also a KKT point of the OCP (5) for the true system.
Then, since the only KKT point of the OCP (5) for the
true system that is in the basin of attraction of a global
optimum of that OCP is the global optimum itself, τ∞ is a
global optimum of the OCP (5) for the true system.

Now we prove that Algorithm 1 converges to a single point
τ∞ by contradiction. Assume that Algorithm 1 converges
to a periodic sequence of s points τk+i, for i = 1, . . . , s,
for k → ∞. As shown, for k → ∞, χ̂m∞(τk+i) = χ̂p(τk+i),
∂χ̂m∞
∂τ (τk+i) = ∂χ̂p

∂τ (τk+i), and τk+i is a KKT point of the
OCP (20) if and only if τk+i is a KKT point of the OCP
(5) for the true system. However, since τk+i is a solution to
the OCP (20) for k →∞, τk+i is also a KKT point of the
OCP (5) for the true system. Then, since only one KKT
point of the OCP (5) for the true system is in the basin of
attraction of a global optimum of that OCP, Algorithm 1
converges to a single point τ∞, which proves condition (2).

Remark 1. The assumption that the points τ1, . . . , τk are in
the basin of attraction of a global optimum of the OCP (5)
for the true system required by Theorem 1 may not be easy
to check. However, Theorem 1 provides sufficient conditions
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for the model to ensure convergence of the true system to
its global optimum: (i) the optimal arc sequence must be
the same for the model and the true system; and (ii) the
initial model specified by the cost and constraint functions
χ̂m(τ ) and the modified models specified by the functions
χ̂mk (τ ) must be such that the global model optimum τ1 and
the subsequent points τk+1 are in the basin of attraction of
a global optimum of the OCP (5) for the true system.

Remark 2. Although the addition of rkσ
φ
g,k(τ ) to the cost

of the OCP (20) is not required for Theorem 1, this
penalty term is useful to limit the exploration of points τ
with a large uncertainty. This enables the implementation
of an approach similar to a trust-region method, which
has been shown to be beneficial for stochastic derivative-
free optimization (Larson and Billups, 2016). However,
instead of dedicated rules to update the trust region, the

proposed adaptive algorithm uses the distribution of gφk (τ )
to implement an analogue of trust region. More precisely,
it penalizes points τ depending on their distance to the
sampled points Tk and the length-scale hyperparameter

λ̂φk . In addition, with this penalty term, if the global model
optimum τ1 is in the basin of attraction of a global optimum
of the OCP (5) for the true system, the subsequent points
τk+1 are also more likely to be in that basin of attraction.

Another important advantage of the proposed adaptive
algorithm is that it avoids the explicit estimation of the
gradients of the cost and constraint functions of the true
system with respect to the decision variables that is re-
quired by modifier adaptation. Nevertheless, the proposed
approach still provides a way to account for the mismatch
between the true system and the model. Moreover, as in the
case of other methods to deal with model mismatch such as
modifier adaptation, the proposed approach benefits from a
small number of decision variables since the representation
via Gaussian processes would be less accurate and more
computationally involved for a high-dimensional domain.

5. NUMERICAL ILLUSTRATION

The simulation example corresponds to a problem of pro-
duction maximization in an acetoacetylation reaction sys-
tem with the species A, B, C, D, E (Rodrigues and Bonvin,
2020). This OCP is formulated mathematically with the

states x(t) :=
[
xr(t)

T xin(t)
]T

as:

max
uin(·),tf

J
(
uin(·), tf

)
= nC(tf ), (21a)

s.t. T
(
uin(·), tf

)
=

[
nB(tf )− cB,maxV (tf )
nD(tf )− cD,maxV (tf )

tf − tf,max

]
≤ 03,(21b)

ẋ(t) = f
(
x(t), uin(t)

)
=

[
rv(t)
uin(t)
1000

]
, x(t0) = 0R+1,

(21c)

[uin(t)− uin uin − uin(t)]
T ≤ 02, (21d)

where uin = 0, uin = 2 mL min−1, tf,max = 250 min,

cB,max = 0.025 mol L−1, cD,max = 0.15 mol L−1, the

R = 3 reaction rates are given by rv,1(t) = k1
nA(t)nB(t)

V (t) ,

rv,2(t) = k2
n2
B(t)
V (t) , rv,3(t) = k3nB(t), with rate constants

k1 = 0.053 L mol−1 min−1, k2 = 0.128 L mol−1 min−1,
k3 = 0.028 min−1, the volume is given by V (t) = V0 +
xin(t), with V0 = 1 L, and the numbers of moles are

1 4 7 10 13 16
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Fig. 1. Evolution of the cost (in blue) and constraints (in
red) for the true system as a function of the iteration
number k of the adaptive algorithm. Solid lines: mean
over 50 realizations of measurement noise; dashed lines
with shading in between: mean ± standard deviation;
dotted lines: optimal values.

given by n(t) = NTxr(t) + cinxin(t) + n0, with n1 =

[−1 −1 1 0 0]
T

, n2 = [0 −2 0 1 0]
T

, n3 = [0 −1 0 0 1]
T

,

N = [n1 n2 n3]
T

, cin = [0 5 0 0 0]
T

mol L−1, n0 =

[0.72 0.05 0.08 0.01 0]
T

mol.

We illustrate the proposed adaptive approach to com-
pute the global solution to the OCP for the true sys-
tem. We assume that the knowledge of the true system
dynamics is inaccurate, in the sense that the true val-
ues of the rate constants are kp1 = 0.053 L mol−1 min−1,

kp2 = 0.128 L mol−1 min−1, and kp3 = 0.028 min−1, but

their values in the model are km1 = 0.05 L mol−1 min−1,
km2 = 0.12 L mol−1 min−1, and km3 = 0.02 min−1.

Firstly, the global solution to the OCP is computed us-
ing the available model. This procedure yields the same
optimal arc sequence as in Rodrigues and Mesbah (2022),
that is, 1U-3-1L. However, in this case, the optimal val-
ues of the decision variables are t̄∗1 = 5.56 min, t̄∗2 =
225.45 min, t∗f = 250 min, u0∗

2 = 1.129 mL min−1, p∗2 =

−1.16× 10−3 mL min−2. This corresponds to a worse cost
n∗C(t∗f ) = 0.48497 mol and inactive and feasible constraints

with n∗B(t∗f ) − cB,maxV
∗(t∗f ) = −0.00897 mol, n∗D(t∗f ) −

cD,maxV
∗(t∗f ) = −0.03107 mol for the true system, while

the optimal cost for the true system would be n∗C(t∗f ) =
0.51373 mol and the constraints would be active. These
values of the decision variables become the first point τ1

evaluated by Algorithm 1, from which the algorithm should
converge to the true solution. To this end, the algorithm
uses measurements of the cost and of the constraints cor-
rupted by noise with variances σ2

φ = 0.0052 mol2 and σ2
ψ1

=

σ2
ψ2

= 0.0012 mol2. At each iteration k, besides the nominal

point τk, N = 5 auxiliary points τ jk are evaluated. The step
away from each nominal point to obtain an auxiliary point
corresponds to +10 min for t̄1, t̄2, tf , +1 mL min−1 for u0

2,

and +1× 10−3 mL min−2 for p2.

Fig. 1 shows the evolution of the cost and constraints for
the true system over 50 realizations of measurement noise
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using rk = 2. The probability of satisfying each constraint

ψ̂pj (τk+1) ≤ 0 is estimated from the frequency of satisfac-

tion of the constraint if ψ̂pj (τk) ≤ 0. This estimate equals
0.9717 and 0.9834 for j = 1, 2, while the theoretical value
is Φ(rk) = 0.9772. The cost for the true system already
approaches its optimal value for k = 2, while the constraints
become nearly active. From k = 10, the cost and constraints
for the true system become almost equal to their optimal
values. The constraint violation remains under 0.0007 mol
for all the realizations, which is comparable to the stan-
dard deviation of the measurement noise. This illustrative
example shows that, despite the existence of measurement
noise and the presence of parametric mismatch between the
true system and its model, the adaptive algorithm enforces
convergence of the true system to the global solution to the
OCP with almost no constraint violation.

6. CONCLUSIONS

This paper presented an approach for obtaining adaptive
global solutions to OCPs in the presence of mismatch be-
tween the true system and its model by using Gaussian pro-
cesses to represent the mismatch in the cost and constraints
for a given arc sequence. The proposed approach enables
efficient solutions to OCPs for general nonlinear dynamical
systems. The method for adaptive global solutions to OCPs
has been detailed for the case of a single input. In future
work, it would be useful to extend this method so as to
provide such solutions in the case of multiple inputs and
stochastic input disturbances.
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Appendix A. ESTIMATION OF HYPERPARAMETERS
FOR GAUSSIAN PROCESSES

The evidence p(yχk |η) := ∫D p(y
χ
k |g

χ
k )p(gχk |η)dτ is the

known function of the hyperparameters η given by

p(yχk |η) = f(yχk |0k(N+1),Σ
χ
y,k(η)), (A.1)

where(
Σχ

y,k(η)
)
i,j

= σ2
χ

(
Ik(N+1)

)
i,j

+Kχ
k (tik, t

j
k|η). (A.2)

To estimate the hyperparameters η from yχk , one can
maximize p(yχk |η) by solving the optimization problem

η̂χk = arg min
η
− 2
k(N+1) log p(yχk |η)− log (2π)

= arg min
η

1
k(N+1) ||y

χ
k ||

2
Σχ

y,k
(η)−1 +

log det(Σχ
y,k

(η))
k(N+1) , (A.3)

which is nonconvex but involves only few hyperparameters.
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