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Abstract— Set invariance is a crucial property for ensuring
safe and feasible performance of closed-loop systems under state
and input constraints. Classical set-theoretic methods for con-
structing reachable and invariant sets are generally inadequate
in handling complex system dynamics and may not be scalable
to high-dimensional systems. This paper presents a sample-
efficient approach for data-driven estimation of invariant sets
for constrained nonlinear systems that can exhibit a mixture
of continuous, discrete, and/or switching-mode behavior. The
approach relies on learning an oracle that verifies if a given
system state is feasible. Thus, the invariant set construction
problem is converted to a classification problem that can be
effectively solved with deep learning. We also present an active
learning algorithm to improve the sample efficiency of deep
learning-based estimation of the feasibility oracle. Randomized
verification is then used to provide probabilistic guarantees
for set invariance. The proposed approach does not impose
any assumptions on the structure of system dynamics, and
is particularly suitable when the feasibility test for control
invariance requires solving (expensive) mixed-integer nonlinear
programs. The approach is illustrated on a benchmark problem.

I. INTRODUCTION

Set invariance theory is fundamental to the design and
control of constrained systems [1]. This stems from the fact
that system constraints can be satisfied at all times if and only
if the initial state of a system lies inside an invariant set. As
such, the notion of set invariance is essential for ensuring
safe evolution of a dynamical system under some admissible
input sequence. Recent years have witnessed a renewed
interest in the theory and application of set invariance; for
example, in the areas of predictive and learning-based control
of uncertain systems to guarantee feasibility and constraint
satisfaction, thereby ensuring safe learning and control of
dynamical systems (e.g., [2], [3], [4]).

Methods for constructing invariant sets based on set oper-
ations are well-established for linear time-invariant systems
subject to linear inequality constraints [5], [6], [7]. Although
these methods cannot be used for general nonlinear systems,
algorithms have been developed for constructing reachable
sets and control invariant sets, which are generally harder
to compute, for certain classes of nonlinear (such as piece-
wise affine) and hybrid systems [8], [9], [10], [11], [12].
Nonetheless, construction of these sets for general dynamical
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systems that exhibit complex forms of nonlinearities and/or
a mixture of continuous and discrete behavior, as commonly
observed in hybrid and switched systems, remains an open
problem. Not only is the construction of reachable and
invariant sets using set-theoretic methods strongly dependent
on the structure and accuracy of a system model, scalability
of these methods is also an important limitation since set-
based operations can quickly become prohibitively expensive
for high-dimensional state and input spaces [13].

Learning-based methods have recently been proposed for
data-driven approximation of reachable and invariant sets, as
an alternative to their explicit construction. The core idea
of these methods is to generate state trajectories in a data-
driven manner by simulating a complex system from some
initial state sampled from an admissible state-space. These
samples can then be used to estimate reachable/invariant sets
using the state-of-the-art machine learning approaches. A key
advantage of learning-based methods for set construction is
that they can even be applied when the underlying system
dynamics are completely unknown; for example, when only
a black-box or high-fidelity system model is available. How-
ever, their performance strongly depends on the sampling
of the state-space. To this end, an active learning method is
proposed in [14] to intelligently select batches of samples
that are most informative and least redundant to previously
labeled samples via submodular maximization. In [15], a
deep learning approach is presented to compute reachable
sets using the Hamilton-Jacobi-Isaacs variational inequality,
while formulating the value function as a neural network
that is trained using a “physics-informed” loss function. An
approach for the computation of reachable sets for high-
dimensional nonlinear systems is proposed in [16], where
sets are represented as zonotopes coupled with local lin-
earization whose error is captured by Lagrange remainders.

This paper presents a sample-efficient, learning-based ap-
proach for estimating invariant set representations for general
constrained nonlinear systems with mixtures of discrete
states, inputs, and/or operating modes. The proposed ap-
proach circumvents the need for making any assumptions
about the structure and complexity of system dynamics.
It relies on the notion of learning a feasibility oracle to
determine whether a given system state lies within some
invariant set. By repeatedly querying this oracle for different
system states, the invariant set construction problem is trans-
formed from a set-based reachability problem into a binary
classification problem that can be tackled with deep learning
tools [17], which are highly versatile in learning complex
(non-convex and/or disjoint) classification boundaries. To
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enhance the sample efficiency of the oracle estimation via
deep learning, we present an active learning algorithm based
on information-theoretic criteria to sequentially enrich train-
ing data in an optimal manner. Active learning allows us
to mitigate the computational cost of invoking the oracle
repeatedly on randomly-selected samples of the state, which
can be prohibitive when the feasibility test for control in-
variance involves solving mixed-integer nonlinear programs.
To enhance the overall performance of the set approximation,
we leverage randomized verification methods [18] to provide
a probabilistic guarantee on the likelihood that a state within
the learned invariant set boundary is truly invariant; these
probability metrics are also utilized as stopping criteria for
the supervised learning task, hence reinforcing the sampling
efficiency. The proposed approach is demonstrated on a
benchmark two-tank system that exhibits switching behavior.

II. PROBLEM STATEMENT

Consider a general representation of nonlinear systems that
can involve a mixture of continuous and discrete states and
control inputs

x+
c = fc(xc, xd, uc, ud), (1a)

x+
d = fd(xc, xd, uc, ud), (1b)

where xc ∈ Rnxc and uc ∈ Rnuc are the continuous state
and control input, respectively; xd ∈ Znxd and ud ∈ Znud

are the discrete state and control input, respectively; and fc :
Rnxc×Znxd×Rnuc×Znud → Rnxc and fd : Rnxc×Znxd×
Rnuc × Znud → Znxd represent the continuous and discrete
system dynamics, respectively. In the remainder of this paper,
we compactly denote the general nonlinear system (1) by

x+ = f(x, u), (2)

where x = {xc, xd} and u = {uc, ud} are the collec-
tion of discrete states and control inputs, respectively. The
system (2) is assumed to be subject to pointwise-in-time
constraints on both the input and state

u ∈ U, x ∈ X. (3)

We now recall concepts of controllable and control invari-
ant sets that are central to the feedback control of constrained
systems (e.g., see [6], [7]).
Definition 1 (T -step controllable set). The T -step control-
lable set KT (Ω, T ) is the largest set of initial states x0

for which there exists an admissible control input sequence
{u0, . . . , uT−1} such that an arbitrary terminal set T ⊂ Ω
is reached in exactly T steps while keeping the evolution of
the state inside the set Ω for the first T − 1 steps, i.e.,

KT (Ω, T ) = {x0 | ∃{uk ∈ U}T−1
0 : {xk ∈ Ω}T−1

0 , xT ∈ T }.

The controllable sets for the system (2) can be computed
recursively as

K0(Ω, T ) = T , (4)

Ki+1(Ω, T ) = Q
(
Ki(Ω, T )

)
∩ Ω,

where Q(·) denotes the one-step set (also known as the
precursor or one-step backward reachable set), i.e.,

Q(Ω) = {xk | ∃uk ∈ U : f(xk, uk) ∈ Ω}.

It follows that the main step in computing the controllable
sets is construction of the one-step set via evaluating the
precursor set operation Q. While Q can be straightforwardly
evaluated for (small-dimensional) linear systems subject to
polytopic constraints, for general nonlinear systems, espe-
cially those with a mixture of continuous and discrete state
and input, evaluating Q is challenging or even completely
intractable even using state-of-the-art set theoretic tools.

We now define the notion of control invariant sets that
allows us to determine whether, given an initial state, it is
possible to choose a feasible control input sequence such that
the state evolution satisfies state constraints for all times.
Definition 2 (Control invariant set). The set Ω is a control
invariant set for the system (2) if and only if there exists a
control input uk ∈ U such that the following condition holds

xk ∈ Ω⇒ ∃uk ∈ U : f(xk, uk) ∈ Ω, (5)

for all xk ∈ Ω, i.e., ∃u ∈ U : f(Ω, u) ⊆ Ω.
One is often interested in constructing the largest control

invariant set contained in some set Ω.
Definition 3 (Maximal control invariant set). The set
C∞(Ω) is the maximal control invariant set contained in Ω
for the system (2) if and only if C∞(Ω) is control invariant
and contains all the control invariant sets contained in Ω.

Control invariant set theory plays a fundamental role in
the control of the constrained system (2). According to
Definitions 2 and 3, there exists an admissible control law
for (2) such that the state constraints in (3) can be satisfied
for all k ∈ N if and only if the initial state x0 ∈ C∞(X) ⊆ X.
Most algorithms for testing whether Ω is control invariant are
based on the well-known geometric condition for invariance
[5], which states that the set Ω is a control invariant set if and
only if Ω ⊆ Q(Ω). As such, testing for control invariance
relies on constructing the one-step set Q(Ω), which is non-
trivial for general dynamical systems, as described above.

Here, we present an approach for data-driven approxi-
mation of control invariant sets for the general nonlinear
system (2), subject to constraints (3), when a control input se-
quence {u0, . . . , uT−1} is determined by repeatedly solving
a dynamic optimization problem that provides a feasibility
test for the control invariance condition. For the general
setting considered here, this optimization problem belongs
to the challenging class of mixed-integer nonlinear programs
(MINLPs). MINLPs are increasingly used for optimization
and control of complex dynamical systems with mixtures
of discrete states, inputs, and/or discrete operating modes,
wherein ensuring feasibility is crucial; for example, in safety-
critical applications. The proposed approach circumvents
the need for direct computation of invariant sets using set-
theoretic methods [1], which is currently impractical for the
system (2). As described next, the core idea of the proposed
approach is to learn an oracle, using data generated from
solving a (typically computationally expensive) MINLP, to
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determine whether a given system state is feasible for all
future time steps. Accordingly, the invariant set construction
problem is transformed into a binary classification problem
by repeatedly querying the oracle for randomly-selected
values of the state. Section IV presents an active learning
algorithm for sample-efficient querying of the oracle, while
providing probabilistic guarantees that a state within the
learned invariant set satisfies the invariance condition (5).

III. DEEP NEURAL NETWORK LEARNING-BASED
FRAMEWORK FOR INVARIANCE

To transform the control invariant set construction problem
into a “learning” problem, we make two key observations.
First, based on the definition of a T -step controllable set,
we can construct a control invariant set C := KT (X,Xf ) by
running the algorithm in (4) with Ω = X and T = Xf for any
T ≥ 1, where Xf ⊂ X is any control invariant set for (2) that
is contained within the state constraints. This was proved in
[19, Theorem 2], along with the fact that each set contains the
previous one, i.e., KT (X,Xf ) ⊆ KT+1(X,Xf ). Second, we
can test if any particular initial state x0 satisfies the finite set
of constraints defining C by solving the following parametric
feasibility problem for any fixed parameter x0 ∈ X

find {u0, . . . , uT−1}, (6a)
s.t. xk+1 = f(xk, uk), ∀k ∈ {0, . . . , T − 1}, (6b)

(xk, uk) ∈ X× U, ∀k ∈ {0, . . . , T − 1}, (6c)
xT ∈ Xf . (6d)

This problem can be straightforwardly cast as an (MIN)LP
depending on the structure of the dynamics f and the
constraints X and U, e.g., by formulating it as a minimization
problem with a zero-value objective function. It is important
to note the breadth of problems that can be represented
by (6). When the dynamics are linear and the constraints
are polytopes, (6) will reduce to a simple convex linear
program that can be solved efficiently to global optimality
(even when the state, input, or horizon T are very large).
When the constraints involve discrete variables (e.g., due
to logical conditions), but the dynamics remain linear, then
(6) becomes an MILP for which significant algorithmic
advances have been made in the past decade so that they
are applicable to large-scale problems. When the dynamics
and/or the constraints include nonlinear terms, then we must
rely on state-of-the-art global MINLP solvers.

Additionally, the choice of Xf is flexible in the sense
that C will be control invariant for any control invariant
Xf . A significant amount of work has been done on the
construction of inner control invariant approximations to the
maximal control invariant set for certain classes of linear
and nonlinear systems (see, e.g., [1], [7], [9], [20]). Even for
the general system (2), we can always select Xf = {xss},
where xss ∈ X denotes a feasible steady-state value that
satisfies xss = f(xss, uss) for some uss ∈ U. This is
not a restrictive assumption in practice since most relevant
engineering and control systems are designed to have at least
one safe operating mode. Therefore, the main value of (6)

is that it allows us to systematically enlarge a known “safe”
set Xf , which is strictly non-decreasing for increasing T .

If we can find a feasible solution to (6) for any fixed value
of x0, we can then guarantee that x0 ∈ C. Furthermore,
if we can prove that no feasible value exists (through a
guaranteed global solver), then we know that x0 ̸∈ C. As
such, a feasibility oracle can be defined as the following
function that maps initial states to a binary number

O(x) =

{
+1, if (6) is feasible for x0 = x,

0, otherwise.
(7)

Since we must have O(x) = 1,∀x ∈ C and O(x) =
0,∀x ̸∈ C, we can interpret C as the decision boundary of
the classification oracle O : X → {0, 1}. Thus, we have
transformed the set construction problem to that of learning
the function O. The main advantage of this new view is that
we can query the oracle to generate data of the form

D = {(x1,O(x1)) , (x2,O(x2)) , . . . , (xq,O(xq))}, (8)

where q denotes the number of samples. Since we do not
know the structure of O, which may be complex, deep neural
networks (DNNs) are used to learn this mapping. DNNs
with L hidden layers are postulated to be universal function
approximators under relatively mild conditions [17], given a
suitable selection of activation functions. Here, the activation
function in the output layer is a sigmoid function, which
ensures that the DNN outputs an estimated probability of
the feasible class label +1 [17]. In the remainder, the DNN
feasibility oracle is represented byM(x, θ), where θ denotes
the DNN parameters (i.e., weights and biases).

The DNN parameters are trained by minimizing a standard
binary classification loss function

L(θ) = 1

Nt

Nt∑
i=1

yi log(pi(θ)) + (1− yi) log(1− pi(θ)),

where yi and pi(θ) =M(xi; θ) denote, respectively, the true
probability and the predicted probability of the true/feasible
class (+1) for the ith training sample. In binary classification,
a probability threshold is used to assign each new observation
with a specific class. Typically, a value of πth = 0.5 is
used to distinguish between the two classes, though this can
be tuned as discussed in the next section. In practice, the
number of nodes, layers, and internal activation functions
constitute hyperparameters of a DNN. Efficient tools, such
as Bayesian optimization [21], can be used to automate the
hyperparameter selection procedure.

We assumed the existence of a sufficiently rich dataset in
(8) to learn an accurate decision boundary. However, since
C may have a complex representation, a large number of
samples may be needed to achieve an accurate model of
the decision boundary, especially if the samples are naively
chosen. This would not be a major issue if querying O was
cheap; however, it can become prohibitively expensive in
this work since performing the feasibility test generally re-
quires the global solution to an MINLP problem. Therefore,
we must select samples {x1, . . . , xNt} such that the most

3433



informative labeled output values are produced. We present
a strategy to identify these informative samples next.

IV. SCALABLE LEARNING-BASED DESIGN OF CONTROL
INVARIANT SETS

Section III presented a general methodology for learning
control invariant sets by fitting DNN approximators of the
oracle functionO defined in (7). However, we did not address
two major practical issues with such a framework: (i) the
selection of the training dataset D, which is expensive to
construct; and (ii) systematic verification that the control
invariance condition holds despite approximation errors. We
address both of these challenges by first developing an active
learning algorithm to sequentially populate D with informa-
tive samples and then proposing a probabilistic validation
method that can provide statistical guarantees that the control
invariance condition holds for the approximated set.

A. Active learning for DNN-based classifiers

To limit the number of required training samples as
much as possible, we employ active learning (AL), which
is a special class of supervised learning algorithms that
interactively query the oracle to label new samples in a
sequential fashion [22], [23]. Although there has been a
significant amount of work on AL, we focus on pool-
based sampling [24], which assumes that there exists a
small set of labeled (input-output) data denoted by D and
a large pool of unlabeled (input only) data denoted by P .
The unlabeled dataset is queried in a greedy fashion using
some metric of informativeness of each sample in P [22].
The most commonly used query framework is uncertainty
sampling, where the learning algorithm queries the samples
that are deemed to be the most uncertain. Common types of
uncertainty sampling include least confidence [24], margin
sampling [25], and information entropy [26]. A conceptual
representation of AL is shown in Fig. 1.

The choice of stopping criterion can have a significant
impact on the overall performance of an AL algorithm. For
example, if one specifies a maximum budget for querying
the oracle, the learned decision boundary may not be very
accurate since we do not know how large to set this value a

Fig. 1. Conceptual representation of active learning compared to random
sampling. Initially, a few samples (green circles) are chosen from the set
of initial conditions. Random search queries samples drawn randomly from
the set, while an active learning algorithm selects samples according to
their information content (e.g., samples closer to boundaries or away from
initial/previous samples are more informative).

Algorithm 1 Proposed active learning algorithm for scalable
construction of control invariant sets
Require: Initial labeled dataset D0, pool of unlabeled sam-

ples P , feasibility oracle O, information metric I, num-
ber of samples to add at each iteration S, and stopping
threshold εtol.

1: Train DNN model M0(x) using D0 (Section III).
2: Set iteration counter j = 0.
3: Set ε = +∞.
4: while ε ≥ εtol do
5: Evaluate Ij = I(M0,P).
6: Set Xj to be S best values of x in list Ij .
7: Compute labels for chosen points Yj = O(Xj).
8: Add new labeled points to the dataset Dj+1 = Dj ∪
{(Xj ,Yj)} and delete Xj from pool P .

9: Train new DNNMj+1(x) using Dj+1 (Section III).
10: Calculate the current error metric ε using (9).
11: Increment iteration counter j ← j + 1.
12: end while

priori. To this end, we propose a novel stopping criterion for
the invariant set learning problem based on geometric argu-
ments. The main idea is to stop the AL algorithm once the
change in the feasible hyper-volume of the predicted control
invariant set between two consecutive iterations falls below
a specified tolerance. Since the feasible area is a function of
the probability threshold πth, we also require the sensitivity
of the hyper-volume to be low, i.e., the area difference is
small for a range of πth. Let Vk(π) denote the hyper-volume
of the predicted control invariant setM(x; θ) ≥ π for a fixed
threshold π. We formulate our proposed error metric as

ε =
1

πU − πL

∫ πU

πL

|Vk(π)− Vk−1(π)|dπ, (9)

for chosen bounds on the probability threshold πL and
πU . Note that, in practice, we discretize the integral in (9)
and use a large set of random samples to approximate the
hyper-volume of the approximated control invariant set. This
can often be done efficiently via batch processing of input
samples to the DNN.

The AL algorithm with the proposed stopping criterion is
summarized in Algorithm 1. This algorithm requires the user
to specify an information metric I(M, x) that maps a model
M and a proposed point x to a real number. The entropy
function is a commonly chosen representation of I, which
is defined for a binary classification problem as

I(M, x) = −M(x) log(M(x)) (10)
− (1−M(x)) log(1−M(x)),

where M(x) is the probability of the positive class (+1)
being predicted and 1 − M(x) is the probability of the
negative class (0) being predicted. From (10), we see that the
information content goes to 0 as the probability of belonging
to the positive class approaches 0 or 1. This reflects our
intuition that the information content will be largest for
values that are nearest to the current decision boundary.
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B. Probabilistic verification of control invariance condition

Even though our proposed AL approach (Algorithm 1) can
greatly improve upon traditional random sampling methods,
it is not guaranteed that the algorithm returns a control
invariant set in light of the approximation errors incurred
during training. Let C̃ denote the approximated control
invariant set computed as a level set of the DNN returned
by Algorithm 1. As discussed earlier, one way to test that
this set is control invariant is to determine if C̃ ⊆ Q(C̃).
Instead of trying to exactly check this condition, we develop
a one-step feasibility test

ϕ(x) =

{
0, if ∃u ∈ U such that f(x, u) ∈ C̃
1, otherwise.

(11)

The control invariance test can then be mathematically stated
as ϕ(x; C̃) = 0 for all x ∈ C̃, which is equivalent to the
following maximization problem maxx∈C̃ ϕ(x) = 0. Since
this is a very challenging problem to solve directly, we
resort to computing a probabilistic estimate by associating
a probability measure PrC̃ over the sample space C̃. We can
then compute an empirical maximum over a set of N i.i.d.
samples of x ∼ PrC̃ as follows

ÊN = max
i=1,...,N

ϕ(x(i)). (12)

We can apply seminal results from [27] to this probabilistic
estimator to establish an explicit bound on the number of
samples required to achieve a desired level of accuracy. In
particular, [27, Theorem 3.1] proves that if

N ≥
log 1

δ

log 1
1−ϵ

, (13)

then

PrC̃N

{
PrC̃{ϕ(x) ≥ ÊN} ≤ ϵ

}
≥ 1− δ, (14)

where ϵ ∈ (0, 1) is often referred to as the accuracy and
δ ∈ (0, 1) as the confidence. It is interesting to note that
the bound in (13) is completely independent of the size of
the set C̃ and the type of probability measure PrC̃ . Also,
note that there are two levels of probabilities in (14) since
ÊN is a random variable that depends on the multi-sample
{x(1), . . . , x(N)}. As such, the scenario bound (14) can be
interpreted as ensuring that the set of points greater than the
estimated worst-case binary feasibility value has a measure
smaller than ϵ, and this is true with probability greater than
or equal to 1 − δ. Since decreasing δ does not result in a
large increase in the number of samples, we can select δ on
the order of 10−4 or smaller in practice.

In summary, for user-selected values of ϵ and δ, we can
compute the minimum number of required samples N using
(13). We then evaluate ÊN in (12) by querying the one-step
feasibility oracle ϕ(x(i)) for all i = 1, . . . , N . If ÊN = 0,
then we can invoke the probability bound (14) to assert that
C is ϵ-control invariant. Smaller values of ϵ will imply a
larger N ; however, this will provide a stronger guarantee
on the probability that the control invariant condition is

satisfied for C. We recommend running this probabilistic
control invariance test after Algorithm 1 has converged. If
this test fails, one must then repeat the overall procedure
by further augmenting the labeled dataset. On our tested
example problems, we have found that only a small number
of repeats are needed to identify a converged solution, though
we have not yet provided a formal proof of convergence.

V. CASE STUDY: TWO-TANK SYSTEM

The proposed approach is demonstrated on a simulation
case study involving two constant-volume tanks in series
[28], as shown in Fig. 2. The hybrid nature of the system
dynamics stems from the fact that the gas flow across each
of the valves (denoted by vi, where the subscript uniquely
identifies the valves at the inlet, outlet, and between tanks 1
and 2) exhibits discrete switching between two flow regimes,
namely low pressure-drop flow and choke flow. This depends
on the relative magnitudes of the tank pressures (i.e., the
states). In addition, the valves allow the gas to flow in only
one direction, which gives an additional regime of zero flow
across v12 whenever the downstream pressure is higher than
the upstream pressure. As such, the system dynamics can be
described by a model of form (1), which is summarized as

[xk+1]1 =
Patmts

V1

(
F in
k (xk, uk)− F 12

k (xk, zk)
)
+ [xk]1,

[xk+1]2 =
Patmts

V2

(
F 12
k (xk, zk)− F out

k (xk, zk)
)
+ [xk]2.

Here, [x]1 = [P ]1, [x]2 = [P ]2, and u is the position of
valve vin; Patm = 14.7 psi; ts = 3 s is the sampling time;
V1 = 1 m3 and V2 = 3 m3 are the volume of tanks 1 and 2,
respectively; and F i denotes the flow across valve i, which
is a function of the states x and the switching variables z as

F in
k (xk, uk) = cinu (Psup − [xk]1) ,

F 12
k (xk, zk) = c12

√
z12k ,

F out
k (xk, zk) = cout

√
zout
k ,

z12k =


0.5[xk]1, if [xk]1 > 2[xk]2,

[x1]k − [x2]k, if [xk]2 ≤ [xk]1 ≤ 2[xk]2,

0, if [xk]1 ≤ [xk]2,

zout
k =

{
0.5[zk]2, if [xk]2 > 2Patm,

[x2]k − Patm, if Patm ≤ [xk]2 ≤ 2Patm,

where Psup = 60 psig is the pressure of the upstream gas,
cin = 0.01, c12 = 0.025, and cout = 0.025.

Tank 1

Tank 2

Fig. 2. Schematic of the two-tank system that exhibits hybrid dynamics.
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TABLE I
HYPERPARAMETERS OF THE DEEP NEURAL NETWORK CLASSIFIER

SELECTED USING GRID SEARCH.

Number of Hidden Layers 4
Neurons per Layer 20
Activation Function ReLU
Regularization Parameter α 0.0
Dropoout Rate 0.0
Learning Rate 0.001
Batch Size 32
Epochs 1000

First, we solved the feasibility problem (6) to generate
the initial training data, which consist of an array of initial
states xk and the corresponding value of feasibility oracle
(7). The state and control input constraints were [10, 10]⊤ ≤
xk ≤ [60, 60]⊤ and 0 ≤ uk ≤ 1, respectively. The terminal
constraint Xf was chosen as the steady-state manifold of the
dynamics. The resulting MINLP was implemented using the
Pyomo optimization modeling language [29], and solved to
global optimality using the Baron solver [30]. The data were
then used to learn a DNN classifier, whose hyperparameters
were optimized to an initial set of 20 training sample points.
The DNN was trained using the Adam optimizer, and its
hyperparameters are given in Table I. To assess classification
performance of the DNN, we used the precision metric

Precision =
True Positives (TP)

True Positives (TP) + False Positives (FP)
.

Thus, the model with the best precision will be the one that
maximizes true positives while minimizing false positives.
Lastly, as described in Section IV, a threshold probability
πth was used as the decision boundary of the classifier. To
mitigate false positives, the decision threshold probability
was chosen to be 0.5 ≤ πth ≤ 1.1 Note that the error
tolerance εtol in Algorithm 1 does not depend on πth.

Fig. 3 shows the performance of the DNN classifier trained
based on 20 samples against a test dataset of 1000 samples.
As expected, the performance of this classifier is inadequate
and very sensitive to the random samples; its precision is
quantified as 75.5% with 37 infeasible samples misclassified
as feasible (i.e., false positives). To improve upon this DNN
classifier, we employ the proposed AL approach (Algorithm
1) by adding 10 samples at every iteration, which are selected
by maximizing the entropy function (10). It is important to
note that Algorithm 1 does not require one to estimate the
true precision rate, which cannot be done without a large
number of test samples that would be computationally too
expensive to obtain for this type of problem. The proposed
stopping criterion (9) is instead based on the sensitivity of the
predictions of the classifier, which can be easily estimated
when only a small amount of data is available.

Fig. 4 demonstrates the performance of the classifier
trained using the proposed AL approach compared to a pure
random search method on a test set of 1000 samples for

1The choice of πth depends on the problem at hand and, thus, can be
treated as a tuning parameter of the classifier.

Fig. 3. Performance of the DNN classifier trained using 20 samples against
a test dataset of 1000 samples. Left subplot shows the predicted decision
boundaries by the classifier, whereas right subplot shows the true decision
boundaries. Green and red points represent the feasible and infeasible
samples, respectively.

threshold probability values πth = 0.99 (top) and πth = 0.5
(bottom). Using a tolerance of ϵtol = 0.01, Algorithm 1
converges after 180 training samples have been selected. To
ensure a fair comparison, we run the random search method
under the same DNN hyperparameter settings and the same
number of 180 samples (just selected randomly in the state
space). An important difference between the DNNs trained
using AL versus random samples is the sensitivity with
respect to the probability threshold value. In particular, the
control invariant set predicted by the AL-based DNN is much
more confident in its predictions (see Table II). Additionally,
the AL-based DNN yields significantly fewer false positives
and achieves a precision value of 98.9% compared to only
89.2% for the DNN trained on randomly-selected samples.

Lastly, we employ the approach presented in Section IV
to verify if the approximated set is ε-control invariant. For
ε = 0.05 and δ = 0.05, 59 random samples are required. The
test was passed for all 59 randomly-selected points, implying
the approximated set is invariant with 95% confidence. We
verified this claim by drawing a large number of random
samples that were predicted to be feasible by the DNN
classifier and running the invariance test on each of these
samples. Less than 1% of these samples failed the test, which
is consistent with the outcome of the verification method that
established less than 5% of samples should fail the test.

VI. CONCLUSION

We presented a sample-efficient, deep learning-based ap-
proach for data-driven estimation of invariant sets with
probabilistic guarantees for invariance. The key benefit of
the presented approach arises from its applicability to general

TABLE II
SENSITIVITY OF NUMBER OF FEASIBLE POINTS PREDICTED BY DNN

CLASSIFIERS VERSUS THRESHOLD VALUE πTH ON TEST DATA.

πth = 0.5 πth = 0.99
Active learning 395 348

Random sampling 456 105
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Fig. 4. Performance of the DNN classifiers trained using active learning
(AL) and randomly-selected samples against a test dataset of 1000 samples
for the decision threshold probability values πth = 0.99 (top) and πth =
0.5 (bottom). Performance is demonstrated in terms of feasible points
predicted by the classifiers. Both classifiers were trained using the same
hyperparameters and number of samples.

constrained nonlinear systems, irrespective of the structure,
complexity, and dimension of system dynamics. Our results
illustrated the importance of active learning for data-efficient
learning of the feasibility oracle, in particular when per-
forming the feasibility test hinges on solving (expensive)
mixed-integer nonlinear programs. Our future work will
focus on establishing rigorous convergence guarantees for
the proposed approach, as well as improved tests for control
invariance of approximated invariant set representations.
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