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Abstract— Perception-aware control systematically considers
the interdependence between perception and control to optimize
the overall performance of the closed-loop system subject to
state and input-dependent uncertainty. That is, it accounts for
the impact of control on sensing and of sensing on control.
Recently, we proposed a perception-aware chance-constrained
MPC (PAC-MPC) that considers the impact of control on
the evolution of the environment uncertainty. In this paper,
we obtain a stabilizing design for the PAC-MPC by first
determining stability conditions in a general nonlinear setting
and then deriving specific design rules for the linear-Gaussian
case. The latter case results in a specific choice of the MPC
cost function parameters, and in design conditions for that the
estimation algorithm, that determine uncertainty propagation
in the MPC prediction model, must satisfy.

I. INTRODUCTION

In applications such as automotive, aerospace and
robotics [1], [2], a system with known dynamics operates
in an environment that is not precisely known, but only
observed through measurements. In such cases, the design
of the control system encompasses both the perception and
control algorithms. While these algorithms are often indepen-
dently designed, they are actually interdependent. Perception
affects control, since the knowledge of the environment and
its uncertainty may affect the control decisions. At the same
time, control affects perception, since the acquisition of
measurements and their quality often depends on system
operation, e.g., where the sensors are pointed, how much
processing is done on the measurements, or where the
attention is focused. A case that is often of practical interest
is when control actions affect the amount of uncertainty in
the measurements, while the measured values are not directly
affected. In statistical terms, this means that the covariance
of the measurement is affected by the control actions - either
directly through some decision variables, or indirectly based
on the system state - while the mean remains unaffected.

Some previous works have proposed designs that ac-
count for the interaction between control and perception
through the constraints [3], [4]. For the case where the
environment measurement uncertainty depends on the system
states and inputs, we proposed a perception-aware chance-
constrained MPC (PAC-MPC) [5], which accounts for the
effect of the uncertainty in the environment through the
chance constraints [6], [7], while also considering the impact
of the control actions on the environment uncertainty. Thus,
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reducing the environment uncertainty and achieving the
control objective are coupled, enabling a systematic trade-
off between perception and control.

Our work in [5] focused on formulating the PAC-MPC
algorithm for the case of linear dynamics under several
design assumptions. This paper extends our work in [5] by
(i) considering general nonlinear dynamics for the system
and the environment; and (ii) deriving the conditions for the
PAC-MPC that ensure the stability of not only the system
state, but also the uncertainty of the environment estimate.
Moreover, in the case of linear system dynamics, we also
show constructive conditions for designing the PAC-MPC
to achieve the desired properties. As such, the PAC-MPC
aims at stabilizing the system state and the uncertainty of
the environment estimate, while the convergence of the mean
of the estimate is assumed to be guaranteed by a proper
design of the estimation algorithm. Although PAC-MPC
shares some similarities with dual-objective MPC (e.g., see
[8], [9]), it allows for simpler stability conditions because
the uncertainty does not affect the system state evolution.

Section II, we summarize the models of system, environ-
ment, constraints and estimator, and describe PAC-MPC for
the nonlinear case. In Section III, we investigate conditions
for recursive feasibility in probability, and show how to
satisfy them in the linear case. In Section IV, we investigate
conditions for stability and we show how to satisfy them
for the linear case. Section V demonstrates the results on an
illustrative example, and Section VI the conclusions. Due to
limited space, we only describe the main steps of the proofs.

Notation: R, R0+, R+, Z, Z0+, and Z+ are the sets
of real, nonnegative real, positive real, integer, nonnegative
integer, and positive integer numbers, respectively. Intervals
are denoted by Z[a,b) = {z ∈ Z : a ≤ z < b}. For
vectors x y, [x]i is i-th component, (x, y) = [x> y>]>,
and for a positive (semi) definite matrix Q > 0, (Q ≥ 0),
‖x‖2Q = x>Qx. For a matrix A, ‖A‖F is the Frobenius
norm and tr the trace. P[A] is the probability of event A.
Given the first and second central moments of a random
variable, i.e., mean µ and covariance Σ, M = (µ,Σ), for
shortness, and x ∼ N (µ,Σ) indicates that x is normally
distributed. A function α : R0+ → R0+ is of class K if
it is continuous, strictly increasing, α(0) = 0, and of class
K∞ if also limc→∞ α(c) = ∞. For compactness we write
g(z, x(a,b), y) = g(z, xa, xb, y).

II. PAC-MPC IN UNCERTAIN ENVIRONMENTS

This section introduces the PAC-MPC for controlling a
system subject to uncertain chance constraints, where the
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environment uncertainty is dependent on the sensing.

A. Models of Known System and Uncertain Environment

We consider a known discrete-time system

xsk+1 = fs(xsk, u
s
k), (1a)

ysk = hs(xsk, u
s
k), (1b)

where xs ∈ Rnx , us ∈ Rnu , and ys ∈ Rny are the system
state, input, and output vectors, respectively. System (1) is
subject to hard constraints on states and inputs, expressed as

xs ∈ X , us ∈ U , (2)

where X and U are the admissible state and the input sets.
While (1) and (2) are assumed to be perfectly known, the

system operates in an uncertain environment. The environ-
ment state dynamics and measurements are modeled as

xek+1 = fe(xek, ψk), (3a)
yek = qe(xek, ζk, x

s
k, u

s
k), (3b)

where xe ∈ Rmx and ye ∈ Rmy are the environment state
and measurement, and ψ, ζ are random variables for the
process noise and measurement noise withMψ = (µψ,Σψ),
Mζ = (µζ ,Σζ), respectively.

The environment (3) imposes additional constraints on
system (1). Due to the uncertainty in (3), the constraints are
modeled as linear individual chance constraints (ICCs)

P
[
hsix

s + heix
e ≤ hbi

]
≥ 1− εi, i ∈ Z[1,nc,], (4)

where εi is the maximum allowed probability of constraint
violation for the ith constraint.

While the environment state evolution (3a) is independent
of (1), the environment measurement (3b) may depend on
the system states and inputs. This allows accounting for
behaviors such as the dependency of the measurement on
the distance or the possibility of controlling the quality of
the measurement, i.e., by changing the focus of the sensors
or varying the amount of sensor data processing.

B. Objective and cost function

The objective of PAC-MPC is to control (1) such that the
output ys tracks a known reference r ∈ Rny , while adhering
to hard constraints (2) and ICCs (4). Due to the dependence
of the environment measurement (3b) on the system states
and inputs, PAC-MPC may trade off the aforementioned
tracking objective with actions that reduce the uncertainty in
the environment, e.g., allowing for better sensing, in order
to improve the future control decisions. The estimates of the
mean and covariance of xe, Me = (µe,Σe), evolve as

µek+1 = gµ (µek, y
e
k, x

s
k, u

s
k) , (5a)

Σek+1 = gΣ (Σek, x
s
k, u

s
k) , (5b)

where gµ, gΣ updates the mean and covariance estimate of
xe based on the states and inputs of (1) and the obtained
measurements of the environment yek. For simplicity, the
constants Mψ , Mζ are not explicitly shown in (5).

In prediction, we propagate the mean and covariance of
xe using a model of g, denoted as ĝ,

µ̂ek+1 = ĝµ (µ̂ek, µ
y
k, x

s
k, u

s
k) , (6a)

Σ̂ek+1 = ĝΣ

(
Σ̂ek,Σ

y
k, x

s
k, u

s
k

)
, (6b)

where M̂e = (µ̂e, Σ̂e) is the prediction of the mean and
covariance of xe, µy is the predicted environment measure-
ment, and Σy is the covariance of the environment measure-
ment prediction error, εy = qe(fe(µek−1, µ

ψ), µζ , xsk, u
s
k) −

yk, and My = (µy,Σy). As in (5), we do not explicitly
showMψ ,Mζ in (6). In what follows, we use the shorthand
notations,

g(Me
k, y

e
k, x

s
k, u

s
k) = (gµ(µek, y

e
k, x

s
k, u

s
k), gΣ(Σek, x

s
k, u

s
k)),

ĝ(M(e,y)
k , xsk, u

s
k) = (ĝµ(µ

(e,y)
k , xsk, u

s
k), ĝΣ(Σ

(e,y)
k , xsk, u

s
k)).

The estimator (5) and predictor (6) play a role similar
to the stabilizing gain in tube-based MPC in preventing the
uncertainty, i.e., the covariance matrix, to constantly grow.
In this work, we focus on the impact of the system operation
on the quality of the environment measurement, that is, on
the uncertainty in the environment estimate. Thus, we make
the following assumption.

Assumption 1: The mean estimator (5a) and mean predic-
tor (6a) are asymptotically convergent and unbiased for every
realization of the sequence {(xk, uk)}k. �

Assumption 1 ensures that the mean of the environment
estimate always asymptotically converges to the true value
and it is satisfied by proper estimator and predictor designs.
Assumption 1 usually holds in practical implementations
of environment estimation, because the system operation
typically does not affect the mean of the measurement.

Due to (4), (5), the overall state includes the system state
and the estimated state of the environment. Since the asymp-
totic convergence of µe is guaranteed by Assumption 1, here
we consider the compound state (xs,Σe).

In this paper we aim to achieve stability of both the
system state xs and the estimate covariance Σe. Hence,
we include both in the cost function. Besides stabilizing
the uncertainty, including the latter in the cost function
may improve the closed-loop performance by reducing the
uncertainty in future steps and, thus, reducing the tightening
of the deterministic re-formulation of (4). As such, the cost
function balances the achievement of the control objective
with the acquisition of information about the environment
through perception

VN (xsk, Uk,Σ
e
k, r) = (7)

= F (xsN |k,Σ
e
N |k, r) +

N−1∑
j=0

`(xsj|k, u
s
j|k,Σ

e
j|k, r)

= Fc(x
s
N |k, r) + Fp(x

s
N |k,Σ

e
N |k, r)+

N−1∑
j=0

[
`c(x

s
j|k, u

s
j|k, r) + `p(x

s
j|k, u

s
j|k,Σ

e
j|k, r)

]
,
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where r is a constant reference setpoint, Uk =(
us0|k, . . . , u

s
N |k

)
is the control sequence, `p(x, u,Σ, r),

Fp(x,Σ, r) are the perception (i.e., sensing) stage and termi-
nal cost, respectively, and `c(x, u, r), Fc(x, r) are the control
stage and terminal cost, respectively. In (7) we do not include
µ because convergence of the mean of the measurement is
provided by Assumption 1.

C. Optimal Control Problem

PAC-MPC aims to solve the following optimal control
problem (OCP) at each sampling time k

V ∗N (xsk, µ
e
k,Σ

e
k, r) = min

Uk

VN (xsk, Uk,Σ
e
k, r) (8a)

s.t. xsj+1|k = fs(xsj|k, u
s
j|k) (8b)

M̂e
j+1|k = ĝ(M̂(e,y)

j|k , xsj|k, u
s
j|k) (8c)

Σej+1|k = gΣ(Σej|k, x
s
j|k, u

s
j|k) (8d)

µ̂yj|k = q̂e(µ̂ej|k, x
s
j|k, u

s
j|k) (8e)

(xsj|k, u
s
j|k) ∈ X × U (8f)

P[hsix
s
j|k + heix

e
j|k ≤ h

b
i ] ≥ 1− εi, i ∈ Z[1,nc,] (8g)

(xsN |k, r) ∈ Zf (M̂e
N |k) (8h)

xs0|k = xsk, µ̂
e
0|k = µek, Σe0|k = Σ̂e0|k = Σek, (8i)

where N ∈ Z+ is the prediction horizon, and Zf (M̂e
N |k)

is the terminal set. The solution of the OCP is denoted by
U∗k = (us,∗

0|k, . . . , u
s,∗
N |k).

In (8), there are two predictors for the environment co-
variance: (8d) computes Σe, which is used in the cost, and
(8c) computes M̂e, which is used in the ICCs (8g) and
also includes uncertainty in the predicted measurement mean,
predicted by q̂e. ICCs (4) are formulated as deterministic
constraints [6], [7]

hsix
s + hei µ̂

e + [γ̄(Σ̂e)]i = hsix
s + [γ(M̂e)]i ≤ hbi , (9)

where γ̄ is the constraint tightening due to the uncertainty on
xe and, hence, M̂e; and γ is the effect of the environment on
the constraints by its mean and covariance. At each sampling
time, the MPC law takes the form

us,∗
k = κMPC (xsk,Me

k, r) = us,∗
0|k, (10)

due to the receding-horizon implementation.

III. RECURSIVE FEASIBILITY OF THE PAC-MPC

Recursive feasibility of the OCP (8) is achieved by de-
signing a terminal set Zf (Me) in (8h) in which (2) and (4)
are satisfied and which is positive invariant for (1) in closed-
loop with a designed terminal controller κf (xs,Me, r). To
achieve recursive feasibility, we make the following assump-
tions.

Assumption 2: Given any Me = (µe,Σe), for all xs, us,
γ(ĝ(M(e,y), xs, us)) ≥ γ(g(Me, ye, xs, us)). �

Assumption 3: Given Me
1 = (µe1,Σ

e
1), Me

2 =
(µe2,Σ

e
2), such that γ(Me

1) ≥ γ(Me
2), for all xs, us,

γ(ĝ(M(e,y)
1 , xs, us)) ≥ γ(ĝ(M(e,y)

2 , xs, us)). �

Assumption 2 ensures that the predictor does not under-
estimate the actual environment effect on the constraint,
and can be satisfied by properly choosing the predicted
measurement error Σyk. Assumption 3 ensures monotonicity
of the environment prediction on the constraints, and can be
satisfied by the design of (5), (6).

Theorem 1: Let Assumptions 2, 3 hold, and let there exist
κf (xs,Me, r), Zf (Me) such that if (xs, r) ∈ Zf (Me):

1) xs ∈ X , κf (xs,Me, r) ∈ U ,
P
[
hsix

s + heix
e ≤ hbi

]
≥ 1− εi, i ∈ Z[1,nc,]

2) (fs(xs, κf (xs,Me, r)), r)

∈ Zf (ĝ(M(e,y), xs, κf (xs,Me, r))).

Then, if (8) is feasible at time k for (1), (5) in closed-loop
with (10) and rk+1 = rk, (8) is feasible at time k + 1 with
probability greater or equal to

∏nc

i=1 εi. �
Proof main steps: For Theorem 1, a feasible solution at

the previous step is extended by κf (xs,Me, r). Feasibility
of the ICCs is guaranteed by γ(Me

k+1) ≤ γ(M̂e
1|k), by

Assumption 2, and by γ(M̂e
j|k+1) ≤ γ(M̂e

j+1|k) for all
j ∈ Z[1,N−1], by combining Assumptions 2, 3.

While Theorem 1 ensures recursive feasibility of (8), we
add a probability because the actual system constraints may
be violated at the next step due to enforcing ICCs. The same
holds for the subsequent results.

If the predictor (6) satisfies additional properties, a simpler
design can achieve similar guarantees.

Corollary 1: Consider κf (xs,Me, r) = κf (xs, r),
Zf (Me) = Zf (γ(Me)) such that if γ(Me

1) ≤ γ(Me
2), then

Zf (γ(Me
1)) ⊇ Zf (γ(Me

2)). Let Assumption 2, 3 hold, and
let (6) be such that γ(ĝ(M(e,y), xs, κf (xs, r))) ≤ γ(Me)
for all (xs, r) ∈ Zf (Me). Let κf (xs, r), Zf (Me) be such
that if (xs, r) ∈ Zf (Me):

1) xs ∈ X , κf (xs, r) ∈ U ,
P
[
hsix

s + heix
e ≤ hbi

]
≥ 1− εi, i ∈ Z[1,nc,]

2) (fs(xs, κf (xs, r)), r) ∈ Zf (Me).

Then, if (8) is feasible at time k, for (1), (5) in closed-loop
with (10) and rk+1 = rk, (8) is feasible at time k + 1 with
probability greater or equal to

∏nc

i=1 εi. �
Proof main steps: The proof of Corollary 1 is similar

to that of Theorem 1, where we prove Zf (M̂e
N |k) ⊆

Zf (M̂e
N |k+1), which enables extending the previous solution

by κf (xsN |k, r)).
The terminal controller and the terminal set can be con-

structed when (1) is linear,

xsk+1 = Axsk +Busk, (11a)
ysk = Exsk, (11b)

the constraints in (2) are linear,

X = {x : Hxx ≤ Kx}, U = {u : Huu ≤ Ku}, (12)

and the terminal controller takes the form

us = κf (xs, r) = Kfx
s + Ffr. (13)
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Let the admissible references be constrained by Hrr ≤
Kr, and construct the maximum output admissible set [10]

O∞ = {(x0, r0, η) : Hxxk ≤ Kx, Huκf (x, r) ≤ Ku, (14)

Hrrk ≤ Kr, hs
ix

s
k + [η]i ≤ hb

i , i ∈ Z[1,nc,], ∀k ∈ Z0+},

for (11), (13) and rk+1 = rk, ηk+1 = ηk. Define O∞(η) =
{(xs, r) : (xs, r, η) ∈ O∞}.

Corollary 2: Consider (11) and (12), and let Assump-
tions 2, 3 hold. Let Zf (Me) = O∞(γ(Me)) and (6) be
such that γ(ĝ(M(e,y), xs, κf (xs, r))) ≤ γ(Me) for all
(xs, r) ∈ Zf (Me). If (8) is feasible at time k for (11),
(5) in closed-loop with (10) and rk+1 = rk, (8) is feasible
at time k+ 1 with probability greater or equal to

∏nc

i=1 εi.�
Proof main steps: Corollary 2 is proved showing that

Corollary 1 conditions holds for η = γ(Me), and O∞(η1) ⊇
O∞(η2), for η2 ≥ η1.

IV. CLOSED-LOOP STABILITY OF THE PAC-MPC

Next, we investigate conditions under which the control
law (10) stabilizes (1) with the estimate provided by (5). The
full state of (1), (5) is ϕ = (xs, µe,Σe). However, since µe

does not affect the dynamics and due to Assumption 1,
we establish conditions for stabilizing ξ = (xs,Σe) on an
equilibrium ξr = (xr,Σr). For ξ, we consider as norm

‖ξ‖ = ‖xs‖+ ‖Σe‖F , (15)

which can be proved to satisfy all the properties of a norm.
For simplicity of notation, in the rest of this section we set

r = 0 and omit it. For compactness, we denote the dynamics
of (1), (5) by ϕk+1 = Φ(ϕk, u

s
k, y

e
k). Also, we denote by ς

the function that selects ξ from the full state ϕ, i.e., ς(ϕ) =
ς((xs, µe,Σe)) = (xs,Σe) = ξ, and Φξ = ς ◦ Φ.

The cost function (7) can be written as

VN (ξ, U) = F (ξN |k) +

N−1∑
j=0

`(ξj|k, u
s
j|k), (16)

where F (ξ) = Fc(x
s) +Fp(Σ

e) and `(ξ, us) = `c(x
s, us) +

`p(Σ
e), and we assume `c(xs, 0) ≤ `c(xs, us) for all us.

Assumption 4: There exist functions αcl , α
p
l , α

c
u, α

p
u ∈

K∞ such that `c(xs, 0) ≥ αcl (‖xs‖), Fc(xs) ≤ αcu(‖xs‖)
and `p(Σe) ≥ αpl (‖Σe‖F ), Fp(Σe) ≤ αpu(‖Σe‖F ). �

Assumption 5: There exists u = κf (ϕ), such that for all
xs ∈ Zf (Me), F (ξ) ≥ `(ξ, κf (ϕ)) + F (Φξ(ϕ, κf (ϕ), ye))

and fs(xs, κf (ϕ)) ∈ Zf (ĝ(M(e,y)
k , xs, κf (ϕ))). �

Under Assumptions 4, 5, the value function of (8) is a
Lyapunov function for the closed-loop system.

Lemma 1: Let Assumptions 4, 5 hold, then there exist
functions αl, αu, α∆ ∈ K∞ such that

αl(‖ξ‖) ≤ V ∗N (ϕ) ≤ αu(‖ξ‖) (17a)
V ∗N (Φ(ϕ, κMPC(ϕ), ye))− V ∗N (ϕ) ≤ −α∆(‖ξ‖), (17b)

when (8) is feasible for (xsk, µ
e
k,Σ

e
k) = ϕ and for

(xsk, µ
e
k,Σ

e
k) = Φ(ϕ, κMPC(ϕ), ye). �

Proof main steps: Lemma 1 is proved by deriving αl, αu
from αcl , α

p
l , αcu, αpu based on Assumption 4, the properties

of class-K functions and (15), and α∆ from Assumption 5.

The terminal cost design is then obtained as follows.
Theorem 2: Let Assumption 4 and the conditions of The-

orem 1 or Corollary 1 hold. If for all xs ∈ Zf (Me)

Fc(f(xs, κf (ϕ))− Fc(xs) + `c(x
s, κf (ϕ))

≤ −M(xs) (18a)

Fp(ĝΣ(Σ(e,y), κf (ξ), xs, κf (ϕ)))− Fp(Σe)
+ `p(Σe) ≤M(xs), (18b)

where M is a nonnegative function, then at every step the
closed-loop (1), (5), (10) has probability at least

∏nc

i=1 εi to
evolve satisfying the Lyapunov function (17). �

Proof main steps: For Theorem 2, recursive feasibility with
probability

∏nc

i=1 εi, i.e., the satisfaction of the constraints
enforced by ICC at the next step, is provided by Theo-
rem 1 or Corollary 1, while (18) satisfies the assumptions
in Lemma 1.

The stability of ϕ requires also the stability of the mean
estimate, which is provided by the estimator (5a), according
to Assumption 1.

A. Constructive Design for Linear Case

Consider (11), (12), and linear environment dynamics

xek+1 = Aexek +Beψk (19a)
yek = Ce(xsk, u

s
k)xek +De(xsk, u

s
k)ζk, (19b)

where ψk ∼ N (µψ,Σψ) and ζk ∼ N (µζ ,Σζ). The measure-
ment equation (19b) depends on system states and inputs to
account for a variable perception quality.

The estimator (5) is naturally selected as a Luenberger-
type estimator with update equations

µek+1 = Λkµ
e
k +Beµψ − Lkyek, (20a)

Σek+1 = ΛkΣekΛ>k +Q+Rk, (20b)

where Λk = Λ(xsk, u
s
k) = Ae + LkCk, Lk = L(xsk, u

s
k),

Ck = Ce(xsk, u
s
k), Q = BeΣψBe>, and R(xsk, u

s
k) =

LkD
e
kΣζ(LkD

e
k)>, De

k = De(xsk, u
s
k). The same equations

are used for predictor (6), where µyk replaces yek in (20a), and
R̂(xsk, u

s
k) = Lk(De

kΣζDe
k
>+Σyk)L>k in (20b), i.e., includes

a term for the measurement prediction error.
In (16), we choose as control stage and terminal costs

`c(x, u, r) = ||x− rx||2Qc
+ ||u− ru||2Rc

, (21a)

Fc(x, r) = ||x− rx||2Pc
, (21b)

with Qc, Rc, Pc > 0, and rx and ru the reference setpoints of
xs and us, respectively. The equilibrium for the uncertainty
covariance is Σr, the solution of the Lyapunov equation
Σr = Λ(rx, ru)ΣrΛ(rx, ru)> + Q + R(rx, ru), which is
computed with steady-state estimator gain L(rx, ru). In (16),
we choose as perception stage cost and terminal cost

`p(Σ
e
k) = Sc

∣∣∣∣Σ̄ek∣∣∣∣2F , Fp(Σ
e
k) = Wc

∣∣∣∣Σ̄ek∣∣∣∣2F , (22)

where Sc,Wc ∈ R+ are weights and Σ̄e = Σe − Σr.
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Corollary 3: Consider (11), (12), (13), (19), (20), and
Zf (Me) = O∞(γ(Me)). Given rk = r for all k ∈ Z0+,
let the assumptions of Corollary 2 hold, R̄k = R(xsk, u

s
k)−

R(rx, ru), with steady state estimator gain L(rx, ru), and
ϑΛ = maxxs:(xs,r)∈Zf (Me) ||Λ(xs, κf (xs, r))||2F . Given
Qc, Rc > 0, if there exist Pc > 0, Wc, Sc, ρ ∈ R+, Mc ≥ 0,
such that for all (xs, r) ∈ Zf (Me),

xs>Mcx
s ≥Wc(1 + ρ)

∣∣∣∣R̄(xs, κf (xs, r))
∣∣∣∣2
F
, (23a)

Sc ≤Wc

[
1−

(
1 + ρ−1

)
ϑ2

Λ

]
, (23b)

Pc ≥ K>f RcKf + (Qc +Mc)+

(As +BsKf )>Pc(A
s +BsKf ), (23c)

the evolution of ξ = (xs,Σe) for (11), (12), (13), (19), (20)
satisfies (17) at each step with probability

∏nc

i=1 εi. �
Proof main steps: The terminal controller κf satisfies

Corollary 2, and hence achieves the properties in Corollary 1.
Inequality (18b) is shown to hold by (23a), (23b), by using
Young’s inequality, the properties of the Frobenious norm,
and linear algebra. Condition (18a) holds for Mc when (23c)
is satisfied. Hence, all the assumptions of Theorem 2 hold
and as a consequence the result of Theorem 2 hold, so that
the statement of this corollary also holds.

Condition (23a) bounds the perception cost increase due
to the difference between Rk and the steady state, and
condition (23c) ensures that such an increase is smaller than
the control cost decrease. Condition, (23b) simply determines
the relative weight of perception terminal and stage cost.

V. NUMERICAL EXAMPLE

We demonstrate the performance of PAC-MPC on a sim-
ple double integrator system, which enables visualizing the
results. A more realistic case study in automated driving,
including rationales for the perception quality models, was
shown in [5]. The system model takes the form of (11), where
A = [ 1 1

0 1 ], B =
[

1/2 0
1 0

]
, E = [ 1 0 ], and [us]2 ∈ [0, 1]

is a perception input that only affects the measurement
quality. The environment model is (19), where Ae = I2,
Be = 0, Ce = I2, De

k = (1 − β[usk]2)D̄, with β ∈ (0, 1),
D̄ ∈ R2×2. Therefore, [us]2 directly affects the measurement
quality, as evidenced by De

k. The random vector ζ follows
a standard normal distribution. The constraint sets in (2)
are X = {x ∈ R2 : |[x]i| ≤ 10, i = 1, 2}, U =
{u ∈ R2 : , [u]1 ∈ [−5, 5], [u]2 ∈ [0, 1]}. System (11)
is subject to [xs]i − [xe]i ≤ 0, i = 1, 2, formulated as
ICCs (4), for εi = 0.05. We solve (8) formulated in CASADI
using IPOPT. Process and measurement noise are randomly
sampled according to their distributions.

Fig. 1 shows the closed-loop state and input trajectories
for different initial system states and fixed initial environment
uncertainty. Initially, the environment uncertainty makes the
setpoint of [xs]1 unreachable. Therefore, PAC-MPC uses the
perception command [us]2 to improve the measurement qual-
ity, so that it can reduce the environment uncertainty more
quickly. The trajectories satisfy the constraints according
to (4) and stabilize to their steady-state, as expected. Fig. 1
shows that the closed-loop trajectory of the environment
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Fig. 1. PAC-MPC simulations with input-dependent measurement qual-
ity. Closed-loop state, input, and environment covariance trajectories for
different initial system states and fixed initial environment uncertainty.
Environment state xe (dash, red), constraints due to environment mean and
covariance, i.e., −γ(Me), (solid, dark red), setpoint rx, ru (solid, black),
deterministic constraints (dash, black), perception input (dash, cyan axis).

covariance has low sensitivity to the initial system state in
this case of input-dependent measurement quality.

Fig. 2 shows the phase plot of the closed-loop state
trajectories, including with the region where the initial state
is recursively feasible for the initial environment uncertainty.
As time progresses the trajectories leave this region because
the uncertainty has been reduced and, hence, a larger area
of the state space has become recursively feasible.

Fig. 3 shows the same simulation as in Fig. 1, for
fixed initial system states and different initial environment
uncertainty. The plot shows some brief constraint violations

Fig. 2. PAC-MPC simulations with input-dependent measurement quality.
Phase plot of closed-loop state trajectories for different initial system states
and fixed initial environment uncertainty. Constraints due to the actual
environment state xe (dash, red), initial region of recursive feasibility
(green), setpoint (cross, black).
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Fig. 3. PAC-MPC simulations with input-dependent measurement quality.
Closed-loop state, input, and covariance trajectories for different initial
environment uncertainties and fixed initial system state. Environment state
xe (dash, red), constraints due to environment mean and covariance, i.e.,
−γ(Me), (solid, dark red), setpoint rx, ru (solid, black), deterministic
constraints (dash, black), perception input (dash, orange axis).

according to (4), and asymptotic stability to the setpoint.
Next, for the same system dynamics, we show a case

of state-dependent measurement inspired from [11], where
De
k = D̄ ||([xsk]1 − [xek]1) /`L||β , `L is a length-scale con-

stant, and β > 0 determines the rate of deterioration as
function of the distance. In this example, the perception
command [us]2 is also removed, i.e., us = [us]1 ∈ R.
Fig. 4 shows the closed-loop trajectories, where the state
trajectories overshoot the setpoint to reduce the distance
from xe, which then reduces the environment covariance,
and eventually stabilize both the system state and the en-
vironment covariance to their setpoints. The environment
covariance sensitivity to the initial conditions of the system
state is increased with respect to that in Fig. 1 since now
the measurement uncertainty depends directly on the system
trajectory, as opposed to a dedicated sensing input.

VI. CONCLUSIONS

We studied the stability properties of PAC-MPC that
controls a known system in a partially unknown environ-
ment being estimated, where the estimate is affected by
the system operation. We derived conditions for general
nonlinear dynamics and a constructive procedure when these
are specialized to the linear case. In the future, we will
investigate reducing conservativeness in accounting for the
measurement prediction error.
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