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AbstractÐ This paper presents a hierarchical infrastructure-
based control algorithm to manage mainstream traffic flow
on freeways. At the upper level, a distributed Extremum-
Seeking control approach is employed to determine the optimal
density of vehicles in a congested cell. The local objective
function is defined such that the average flow within the
target cell is maximized to resolve the congestion, and the flow
difference with its upstream cell is minimized to prevent back-
propagating the congestion. At the lower level, a distributed
Filtered Feedback Linearization controller is used to update
the suggested velocity communicated to the vehicles so that the
desired density determined by the upper level can be achieved
in each cell. We adopted the METANET model to describe
the aggregated dynamics of the traffic network. We tested the
performance of these controllers via a MATLAB-VISSIM COM
interface. The results demonstrate that the designed distributed
controllers can achieve the desired closed-loop performance
despite unknown disturbances in an uncertain large-scale traffic
network.

I. INTRODUCTION

The average American driver lost 36 hours (almost a week

of work) due to traffic congestion in 2021 [1]. While building

additional infrastructure may not be practically sustainable,

various infrastructure-based and vehicle-based traffic control

strategies have been developed to reduce the congestion [2].

The infrastructure-based algorithms, using the macro-

scopic models of a traffic network, focus on improving

the aggregated traffic behavior (such as overall traffic flow)

[3]. Infrastructure-based controllers include ramp-metering,

variable speed limit (VSL) control, and lane management

[4]. The main challenges associated with the design of

infrastructure-based traffic controllers are due to (i) uncer-

tainty and nonlinearity of the traffic system macroscopic

dynamics and (ii) significant computational load of central-

ized macro-level controllers [5]. For instance, METNAET
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traffic model [6] describes the traffic dynamics in terms

of the density and average velocity of the vehicles within

a traffic network. However, the model parameters of the

METANET model are state-dependent and, thus, hard to

characterize. Furthermore, the optimal operating density of

a congested cell with an unknown downstream bottleneck

is not known perfectly. To address these issues, different

algorithms, including model-free based control algorithms,

have been investigated [7]. In [8], Extremum Seeking (ES)

control is employed for traffic congestion control with a

downstream bottleneck. In this study, an unknown flow-

density relationship is considered at the bottleneck area, and

the optimum density of the upstream cell is determined to

mitigate the congestion. Moreover, they assumed the traffic

flow to be the control input; however, direct traffic flow

control is not practical. To address this issue, a set-point

tracking controller shall be integrated into the design of an

ES-based controller [9]. An example of a set-point tracking

controller that has been widely used for traffic control is

the Feedback Linearization (FL) approach. The advantage

of this method is its strength in addressing the challenges

caused by the non-linearity in the macroscopic dynamics

[10]. However, the main drawback of FL is that it requires

model information. Because the traffic dynamics contain

uncertainties associated with the unmodeled dynamics of a

traffic system, which can intrinsically be state- and control-

dependent, making it impractical to get the required model

information for the FL controller. This paper addresses this

shortcoming by introducing the Distributed Filtered Feed-

back Linearization (D-FFL) approach. D-FFL is a high-

parameter-stabilizing control technique that addresses both

command following and disturbance rejection for Multi-

Input-Multi-Output (MIMO) nonlinear systems where the

equilibrium of the zero dynamics is locally asymptotically

stable [11]. D-FFL is mathematically equivalent to low-

pass filtering, a standard feedback linearization controller.

However, unlike the standard FL, the controller only requires

limited model information, specifically, knowledge of the

vector relative degree and the dynamic-inversion matrix. As

a result, d-FFL makes the L∞ of the command following

error arbitrarily small despite the presence of unknown

disturbances [12].

This paper presents a distributed hierarchical control

framework to leverage the advantages of both ES and FFL

controllers, with ES at the upper level and FFL at the

lower level. We discretize a freeway into multiple cells. We
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adopt the METNAET model [6] to describe the macroscopic

dynamics of each cell. At the upper level, we employ a

distributed ES algorithm to find the optimal density of the

congested cell to maximize the average flow of the target

cell and minimize its flow difference with the upstream cell.

Furthermore, we use distributed FFL controller to ensure

each cell reaches its desired density by controlling the aver-

age velocity of the vehicles within the cell and its upstream

cell. The contributions of this paper can be summarized as

follows:

• Designing a scalable hierarchical infrastructure-based

traffic controller (D-ES-FFL) that requires only limited

traffic model information and is robust to an unknown

disturbance in the traffic system.

• Establishing a MATLAB-VISSIM COM interface that

allows closed-loop control of a simulated traffic sce-

nario in PTV-VISSIM and validating the effectiveness

of the distributed ES-FFL control approach using this

interface.

The outline of this paper is as follows. Section II presents

the basics of the homogeneous METNAET model for de-

scribing the macroscopic dynamics of a freeway traffic

system. Section III discusses the design of the hierarchical

control approach to achieve the desired traffic behavior.

Section IV presents the simulation results, which show the

effectiveness of the D-ES-FFL control approach for manag-

ing a freeway traffic system. Finally, Section V consists of

this research’s conclusions and future directions.

II. MACROSCOPIC DYNAMICS OF A FREEWAY

Consider a freeway traffic network, as shown in Fig.

1, wherein the road is discretized into multiple cells. We

characterize cell, Ci, where i ∈ {1, 2, · · · , n}, by the density

of vehicles (ρi), space mean speed of vehicles (vi) within the

cell, and the total average flow rate (qi) of the cell. We adopt

a METANET model wherein the traffic states are the density

and average velocity of vehicles in a cell to determine the

macroscopic dynamics of the freeway network. Specifically,

the dynamics of cell Ci are described by

ρ̇i(t) =
1

Liλi

(qi−1(t)− qi(t) + di,ρ(t)) (1a)

v̇i(t) =
1

τi

(

Ui(t)− vi(t)
)

+

1

Li

[

vi(t)
(

vi−1(t)− vi(t)
)

−
εi
τi

ρi+1(t)− ρi(t)

ρi(t) + κi

]

(1b)

qi(t) = ρi(t)vi(t), (1c)

where di,ρ(t) is a disturbance (e.g., uncontrolled traffic

demand including the off-ramps and on-ramps), λi is the

number of the lanes in each cell, and Li is the length of

each cell. Here, Ui(t) = (1 − βi(t))Vi(t) is considered the

suggested velocity for the vehicles in the traffic network,

where Vi(t) = vFFexp
[

−1
am,i

(

ρi(t)
ρc

)am,i
]

is the steady-state

velocity-density relationship in the Macroscopic Fundamen-

tal Diagram (MFD) [13]. vFF is the free-flow velocity, and

Fig. 1: Schematic of a traffic network.

ρc is the critical density of a cell. Also, am,i, κi, τi and,

εi are state-dependent model parameters for each cell. For

the sake of simplicity, the model parameters are considered

equal throughout the whole traffic network.

In this paper, we define 0 ≤ βi(t) ≤ 1 as the control

command adjusting the suggested velocity to the vehicles. In

particular, when βi(t) = 0, the system is not controlled, and

the macroscopic dynamics of the system follow the velocity-

density steady-state behavior, which can be determined from

the MFD. On the other hand, βi(t) = 1 indicates that the

controller is commanding the vehicles to stop.

The dynamics of a whole freeway traffic network consist-

ing of n cells can be expressed as

ẋ(t) = f(x(t)) +G(x(t))u(t) +D(t) (2a)

y(t) = Cx(t), (2b)

where t ≥ 0; x(t) = [ρ1(t) · · · ρn(t) v1(t) · · · vn(t)]
T ∈

R
2n is the state vector, y(t) = [ρs(t), · · · , ρm(t)]T ∈

R
m−s+1 where s ≥ 2 and m ≤ n is the output vector,

u(t) = [βs−1(t) · · · βm(t)]T ∈ R
m−s+2 is the control input

vector, f(x(t)) = [ρ̇1(t) · · · ρ̇n(t) v̂1(t) · · · v̂n(t)]
T ∈ R

2n

where v̂i(t) =
1
τ

(

Vi(t)−vi(t)
)

+ 1
L

[

vi(t)
(

vi−1(t)−vi(t)
)

−

ε
τ

ρi+1(t)−ρi(t)
ρi(t)+κ

]

, G(x(t)) =
[

[0](m−s+2×n) [0](m−s+2×s−2)

[Ĝ](m−s+2×m−s+2) [0](m−s+2×n−m)

]T

where

Ĝ = diag{− 1
τ
Vs−1, ...,−

1
τ
Vm} and, D(t) =

[D1(t) · · · D2n(t)]
T ∈ R

2n is the unknown-and-

unmeasured disturbance. The size of the control input vector

u(t) is larger because the control command is constrained

(0 ≤ β(t) ≤ 1). Therefore, to control the density of the

vehicle in cell Ci, two control commands (two suggested

velocities) shall be used (see the controllability matrix

derived in [14]). These two control commands are the

suggested velocity of the upstream cell Ci−1 and the

suggested velocity of the target cell Ci. By reducing the

suggested velocity of the upstream cell, Ci−1, the inflow

to cell Ci can be reduced. Also, by reducing the suggested

velocity of the cell, Ci, the outflow of cell Ci can be

reduced. Adjusting these two control commands, the density

in cell Ci can be increased or decreased.

III. HIERARCHICAL INFRASTRUCTURE-BASED

CONTROLLER DESIGN

This section focuses on the design of a distributed hierar-

chical macroscopic traffic management controller to improve

the performance of a homogeneous traffic network in terms

of mobility, as shown in Fig. 2. The controller has a two-level

structure with a D-ES controller at the upper level (shown

in blue gradient color) and a D-FFL controller at the lower
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Fig. 2: Schematic of the whole traffic network with n cells

consisting of the local hierarchical controller.

level (shown in green gradient color).

A. Lower-level Controller: D-FFL

At the lower level of the proposed hierarchical traffic con-

trol framework, we propose to employ a D-FFL controller to

update the suggested velocity communicated to the vehicles

so that the desired densities (determined by the D-ES in

Section III.B) can be achieved. D-FFL relies on knowledge

of the relative degree and the dynamic inversion matrix [12].

For a cell Ci, the relative degree (q̄) from ui and ui−1 to yi
is 2. The D-FFL control design is based on the following

assumptions.

Assumption 1: The disturbance D(t) is continuous and

(q̄ − 1)-times differentiable.

Assumption 2: The reference model input ρd(t) is

bounded and q̄-times differentiable.

Let us define the local reference model ÿm + α1ẏm +
α0ym = ρ̈d + ζ1ρ̇

d + ζ0ρ
d, where ρd is the desired

density of the target cell determined by the upper-level

controller, and α0, α1, ζ0, ζ1 are constants. Also, let us define

e(t) = y(t) − ym(t) as the error term and the square

root of the average power of the density error as Pe =
[

1
t1−t0

∫ t1

t0
eT(τ)e(τ)dτ

]
1
2

. The control objective is to design

a control input u that asymptotically stabilizes the closed-

loop system and makes Pe arbitrarily small.To this end, the

ideal FL control input is given by [11]

ud(x,ΦD,Φr) =

−M−†
u (MuM

−†
u )−1

(

ν(x,ΦD,Φr) + Ψ(x,ΦD)
)

, (3)

where Φr = [ρd ρ̇d ρ̈d]T, ΦD = [D Ḋ]T, Ψ(x,ΦD) =
C ∂f

∂x
(f(x) + D) + CḊ, and ν(x,ΦD,Φr) = ρ̈d + ζ1ρ̇

d +
ζ0ρ

d − α1ẏm − α0ym. Additionally, M−†
u is the pseudo

inverse of the dynamic inversion matrix Mu. Moreover,

Mu = C ∂f(x(t))
∂x

G(x(t)) and for the traffic system defined

in (2), we have

Mu =





ρs−1Vs−1 −ρsVs 0 ··· 0
0 ρsVs −ρs+1Vs+1 ··· 0

...
...

. . .
. . .

...
0 ··· 0 ρm−1Vm−1 −ρmVm



 .

(4)

Note that Mu is a non-square matrix. It can be shown

that for the closed-loop system in (2)-(3), where D = 0 and

u = ud, the zero dynamics is stable; therefore, the nonlinear

closed-loop system is minimum phase.

The ideal control input ud is not implementable because

ud depends on the measurement of the full state x(t),
knowledge of the uncertain dynamic function f(x(t)), and

unknown disturbances D(t). To address this issue, first, we

assume that the FL control input ud is sufficiently smooth,

as stated in Assumption 3.

Assumption 3: For i ∈ N, ∂
∂x

[ud
i (x,ΦD,Φr)] and

∂
∂ΦD

[ud
i (x,ΦD,Φr)] exist and are continuous.

Then, we generate the implementable control input u by

passing ud through the designed filter. Specifically,

[pσ̄z(p)I + σz(0)M
′
uMu]u = σz(0)M

′
uMuu

d, (5)

where p = d/dt, M ′
u is the transpose of Mu, σz(s) is a

monic polynomial with a degree b ≥ 2 and real coefficients

that are functions of a real parameter z. Thus, σz can be

written as σz = sb + σb−1,zs
b−1 + · · · + σ1,zs + σ0,z

where σ0,z, · · · , σb−1,z ∈ R. The polynomial σz is a design

parameter that must satisfy certain conditions listed in [15].

Combining (3) and (5) the FFL control input is

pσ̄z(p)u = σz(0)M
′
u[ρ̈

d + ζ1ρ̇
d + ζ0ρ

d − ÿ − α1ẏ − α0y].
(6)

The controllers (3) and (6) are mathematically equivalent;

however, unlike the FL control input (3), the FFL input in (6)

does not require knowledge of Ψ(x,ΦD) or the measurement

of D and Ḋ. The FFL control input is designed using the

knowledge about the relative degree, the dynamic inversion

matrix Mu, reference-model parameters α1, α0, ζ1 and ζ0
and the filter polynomial ϱz , which depends on the real

parameter z.

It should be noted that the arrays of Mu are functions of

measured densities ρj , and Vj for j ∈ {s, · · · ,m}. Here, Vj ,

itself is a function of the free-flow velocity (vFF), which is

a predefined value and parameters am and ρc,j (Please see

Section II.) that may not be necessarily known. To address

this issue, we define M̄u as an upper bound of Mu. In

particular, since vFF is an upper bound of Vj , we define

M̄u to be

M̄u =





ρs−1vFF −ρsvFF 0 ··· 0
0 ρsvs+1 −ρs+1vFF ··· 0

...
...

. . .
. . .

...
0 ··· 0 ρm−1vFF −ρmvFF



 . (7)

Therefore, by replacing Mu with M̄u in (6), the FFL

controller does not need to know the exact values of the

state-dependent parameters in the METANET model.

Proposition 1: Consider the minimum phase system de-

scribed by (2)-(6) under assumptions 1-3. For sufficiently

large z value in the filter polynomial ϱz , the closed-loop

(2)-(6) is asymptotically stable. The minimum stabilizing z
depends on the system dynamics and its parameters.

Proof: The proof can be found in [11], [12].

Remark 1: The average power of the performance Pe can

be made arbitrarily small by a sufficiently large choice of z.

In practice, a nominal plant model can be used to de-

termine a sufficiently large z that achieves stability and a
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Fig. 3: Detailed schematic of the hierarchical controller

design for cell i consisting of D-ES and D-FFL.

desired level of performance.

B. Higher-level Controller: D-ES

At the upper-level of the proposed hierarchical traffic

control framework, we use a D-ES controller to determine

an optimal density ρd within a congested cell Ci. The goal

is to maximize the average flow of the target cell to mitigate

the traffic congestion while minimizing its flow difference

with the upstream cell’s flow to prevent back-propagating the

congestion. In particular, for each congested cell, we define

the following optimization problem

max
ρi

Ji(t) =wi,1(t)Q
2
i (t)− wi,2(t)[Qi(t)−Qi−1(t)]

2, (8)

where wi,1(t) and wi,2(t) are the weights for each term in

the cost function. In addition, Qi(t) = ρi(t)Vi(t) and it is

subjected to the lower-level dynamics. Using (2) and (6), the

lower-level dynamics are

ẊLL = FLL

(

XLL,G(XLL, ρ
d)
)

, (9)

where XLL = [x u u̇ · · · u(b−1)].
We designed a D-ES controller to solve the optimization

problem in (8). Fig. 3 shows the details of the D-ES

controller. The parameter that is optimized (ρdi ) is perturbed

using a low-amplitude sinusoidal signal Ãi sin(Ωit + ϕ̃i).
The perturbation frequency Ωi must be chosen small enough

to ensure that the lower-level dynamics appear as a static

nonlinearity from the viewpoint of the ES loop [16]. Consider

Ωi = O(ω), ωi,HPF = O(ω∆) and, ωi,LPF = O(ω∆) where

O is the statistic order, ω and ∆ are small positive constants.

Remark 2: The convergence time of the desired density

estimated by the ES is significantly slower than the response

time of the inner loop, we can assume that the density

reference is constant compared with the inner-loop dynamics.

Although increasing the perturbation frequency in

gradient-based ES increases the convergence rate, the steady-

state error will also increase significantly [16]. In this paper,

we selected the perturbation frequency Ωi to be 10 times

slower than the lower-level dynamics. To ensure the stability

and convergence of the D-ES controller, a set of assumptions

shall be met [17].

Assumption 4: There exists a smooth function ℓ : Rn →
R

m−s+1 such that FLL

(

XLL,G(XLL, ρ
d)
)

= 0 if and only

if XLL = ℓ(ρd).
Assumption 5: For each ρd ∈ R

m−s+1, the equilibrium

x = ℓ(ρd) of the system ẊLL = FLL

(

XLL,G(XLL, ρ
d)
)

is

locally exponentially stable uniformly in ρd.

Fig. 4: I485 inner highway between Mallard Creek Rd and

Harrisburg Rd, Charlotte, North Carolina. Target cells 2, 5,

6, and 9 that are in the congested phase are highlighted.

Assumption 6: There exists ρ∗ ∈ R
m−s+1 such that

∂
∂ρd J(ρ

∗) = 0 and ∂2

∂2ρd J(ρ
∗) < 0.

In this paper, Assumptions 4 and 5 are met since the

D-FFL controller guarantees the asymptotic stability of the

lower-level dynamics (see Proposition 1). Finally, Assump-

tion 6 is also met since the cost function in (8) is quadratic

based on the form of the MFD function.

The following proposition summarizes the stability and

convergence of the higher-level D-ES controller:

Proposition 2: Consider the closed-loop feedback system

in Fig. 3 under Assumptions 4-6 with the control input (6).

Recall that Remark 2 is in place. There exists ω̄ > 0, and for

any ω ∈ (0, ω̄) there exists ∆̄, Ā > 0 such that for the given

ω and any |Ã| ∈ (0, Ā) and ∆ ∈ (0, ∆̄) there exists a neigh-

borhood of the point (x, ρd, ξ, η) =
(

ℓ(ρ∗), ρ∗, 0, J(ρ∗)
)

such that any solution of the feedback system (2)-(6) from the

neighborhood exponentially converges to an O(ω+∆+|Ã|)-
neighborhood of that point. Furthermore, y(t) converges to

an O(ω +∆+ |Ã|)-neighborhood of J(ρ∗).
Proof: The proof can be found in [16], [17].

IV. SIMULATIONS & RESULTS

To demonstrate the effectiveness of the proposed hierar-

chical framework, we conduct a series of case studies. Fig.

4 is the schematic diagram of the freeway section used in

these case studies. It is a subsection of I-485 inner highway,

between Mallard Creek Rd and Harrisburg Rd, Charlotte,

North Carolina. This section is approximately 10 miles long,

with 4 lanes with a speed limit of 70 mph. We discretize this

network into 10 cells, as shown in Fig. 4.

We adopt the model parameters of the METANET model

to be ε = 38mile2

h
, κ = 18 veh

mile.h
, τ = 5s, γ = 4,

and am = h(ρi), which is the only state-varying model

parameter in this case study. In this research, we used brute-

force search to find out the h(ρi) function, which is equal to

[11, 7, 4, 1.5] if the density of the cell is [ρi ≤ ρc, ρc < ρi ≤
1.5ρc, 1.5ρc < ρi ≤ 3ρc, 3ρc < ρi ≤ ρJ ] respectively. Also,

the critical density of the network is ρc = 35 veh
mile.lane , the

jam density is ρJ = 150 veh
mile.lane and the free-flow velocity

is vFF = 70 mph . Furthermore, we select the origin flow

as q0 = 1980 veh/h. We selected these values by running

PTV-VISSIM simulation using I-485 N of Exit 28 (Fig. 4)

traffic flow data reported on Tuesday, 22 December 2020,

at peak time between 4:30-5:30 PM and comparing the

measured states with the homogeneous METANET model.
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The flow disturbances in the traffic network are modeled

as high amplitude low-frequency sine waves. Finally, the

parameter values for each controller are listed here: wi,1 =
wi,2 = 1 for i ∈ 2, 5, 6, 9, Âi = Ãi = 1, Ωi = 0.001π rad

s
,

ωi,LPF = 0.5Ωi, ωi,HPF = 0.4Ωi, Ki = 1.35 and z = 1.

A. Case-study 1:D-ES-FFL Performance

One of the common approaches in large network traffic

control is to use a Proportional-Integral-Derivative (PID)

feedback regulator for Mainstream Traffic Flow Control

(MTFC) and use the VSL as an actuator [18]. In this case

study, first, we compare the performance of the designed

lower-level controller (D-FFL) with the PID-MTFC. To this

end, a set point, which is typically the critical density

value, is selected for cell 5. The proportional, integral, and

derivative gains are KP = 11.2,KI = 0.25, and KD = 0.02,

respectively. The gains designed for the PID-MFTC approach

were selected through numerical testing. These gains provide

the best closed-loop command following for our problem.

The density of the target cell 5 in both D-FFL and PID-

MTFC scenarios is shown in Fig. 5. By comparing the

results of the designed D-FFL controller and the PID-MTFC

controller, it is found that D-FFL has a faster settling time.

D-FFL is able to control the target cell to reach the desired

density in 4 minutes, while it takes 9 minutes for PID-MTFC

to reach the desired set-point. It should also be noted that in

the proposed hierarchical control framework, the perturbation

frequency of the higher-level controller (D-ES) depends on

the time constant of the lower-level dynamics (lower-level

controller + plant). Therefore, the overall convergence rate

of the D-ES-FFL is faster than the ES-PID-MTFC controller.

Next, we present a numerical example showing the

D-ES-FFL controller’s effectiveness in mitigating conges-

tion and preventing back-propagating congestion using the

METANET model. This case study compares two scenarios

where there is no active infrastructure controller in the traffic

network versus when there is an active local D-ES-FFL

controller for target cells in the traffic network. As shown

in Fig. 4, the target cells 2, 5, 6, and 9 are on the verge of

getting heavily congested due to the traffic network inflow

and unknown downstream bottleneck.

In Fig. 6, the states of the target cells 5 and 6 and the

upstream cell 4 are shown for both ºD-ES-FFLº and ªNo-

Controlº scenarios. As shown, in the No-Control scenario,

Fig. 5: Density changes of the target cell 5 using D-FFL

controller (Blue) and PID-MTFC controller (Red).

Fig. 6: States, Suggested velocities (solid green line) and

control commands (dashed-dotted blue line) for cells 4, 5,

and 6 in both scenarios.

the congestion starts back-propagating, and as the density

increases, the congestion gets heavier, and the average veloc-

ity of each cell reduces. By activating the local ªD-ES-FFLº

controller, estimating the optimal densities of the cell, and

finally tracking the optimal densities, the target cell avoids

jam conditions. According to (8, the local objective function

of each target cell is trying to maximize the average flow

rate of the cell and minimize its flow difference with the

upstream cell. In Fig. 7, the objective function values for

cells 5 and 6 are shown in both scenarios. Furthermore, the

total average flow of all cells upstream of the bottleneck

(QTOT =
∑6

i=1 Qi) is shown. Finally, in Fig. 8, a colormap

of the velocity changes in the whole network for the full-time

spectrum is shown in both ªNo-Controlº and ªD-ES-FFLº

scenarios.

B. Case-study 2: D-ES-FFL with PTV-VISSIM

In the second case study, we use a real-world traffic

simulator, PTV Vissim, to show the effectiveness of D-ES-

FFL control in a real-world traffic simulation with real-world

traffic data. For this study, after the completion of each cycle

(duration = 10 minutes), the density of the target cells is

recorded and passed to the MATLAB-Simulink environment

through the COM interface. Next, the local objective function

of the congested cells is calculated and fed to the D-ES

controller. Then, using the estimated optimal densities of D-

ES in the Simulink, the suggested control commands are

generated using the D-FFL controller. These commands are

then passed to the MATLAB code and applied to the VISSIM

through the COM interface to update the speed limit signs in

the traffic network. We considered the same problem as case

Fig. 7: Objective functions of target cells 5 and 6 (sub-plot

a) and the total average flow of all cells upstream of the

bottleneck (sub-plot b).
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Fig. 8: Visualization of the traffic velocity data for the

whole network in ªNo-Controlº and ªD-ES-FFLº scenarios.

study 1. The highway link has ten cells with freeway link

behavior type, and each cell is 1 mile in length. The inflow

on the traffic network was set equal to 1980 veh/h with the

stochastic volume type. The vehicle class of the vehicles in

the traffic network was chosen to be ªCarº with the driving

behavior of ªFreewayº. To have a distributed traffic control

network, we put the variable speed limit signs every 0.2
mile, so all vehicles in each cell get the suggested velocities

information from the controller almost simultaneously. Also,

in the first 12 minutes of the simulation, there is no active

controller and effective communication between MATLAB

and PTV VISSIM, so the desired initial conditions are

reached. As it is shown in Fig. 9, by activating the ªD-

Fig. 9: States (density and velocity) cells 4, 5 and, 6 are

shown using PTV-VISSIM in both scenarios.

ES-FFLº controller, the average velocity in target cells is

greater than the ªNo-Controlº scenario while its density is

less congested.

V. CONCLUSIONS & FUTURE WORKS

This paper focuses on modeling and controlling a con-

gested traffic network with multiple bottlenecks. We de-

signed a hierarchical infrastructure-based controller to mit-

igate the traffic network’s congestion despite the unknown

disturbances in the system. At the upper level, a Distributed

Extremum Seeking (D-ES) controller aims to find the op-

timal operating densities of the target cell. At the lower

level, a Distributed Filtered Feedback Linearization (D-FFL)

controller tracks the desired density inputs from the higher

level by controlling the suggested velocity of the vehicles

in the target cell and its upstream cell. In the future, we

will extend this case study to a traffic network consisting of

multiple classes of vehicles, such as Human-driven Vehicles

(HDVs) and Autonomous Vehicles (AVs).
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