
Novelty Search for Neuroevolutionary Reinforcement Learning of
Deceptive Systems: An Application to Control of Colloidal Self-assembly

Jared O’Leary, Mira M. Khare, Ali Mesbah

Abstract— Colloidal self-assembly systems are generally dif-
ficult to control due to their highly nonlinear and stochastic
dynamics and sparse rewards. These systems are also inherently
deceptive, as successful control policies must be able to smooth
out unavoidable defects and therefore temporarily move farther
away from their goal in order to eventually realize the desired
goal. This paper investigates the viability of evolutionary
reinforcement learning (RL) based on novelty search, wherein
behavioral novelty alone is used to learn control policies that
can systematically mitigate deceptive dynamics. As such, for
stochastic nonlinear systems that are prone to a deceptive
behavior, novelty search is a promising alternative to the widely
used objective search RL, where merely progress towards a
pre-defined goal is used to learn and update control policies.
In this work, we pair novelty search RL with a complexifying
algorithm that simultaneously learns the neural network archi-
tecture and parameters of a control policy. The complexifying
algorithm principles the novelty search by ensuring that simple
behaviors must be discovered before more complex ones. We
evaluate the performance of evolutionary RL based on objective
search and novelty search on a benchmark in-silico colloidal
self-assembly problem.

I. INTRODUCTION

Colloidal self-assembly (SA) is the process by which
discrete components (e.g., micro-/nano-particles in solution)
spontaneously organize into an ordered state [1]. The spon-
taneous self-organization central to colloidal SA enables
“bottom-up” materials synthesis, which can allow for man-
ufacturing advanced, highly-ordered crystalline structures in
an inherently parallelizable and cost-effective manner [2],
[3]. The fact that colloidal SA can begin with micro- and/or
nano-scale building blocks of varying complexity makes
colloidal SA particularly suitable for bottom-up engineering
and synthesis of metamaterials with unique optical, electrical,
or mechanical properties [2], [3].

Nonetheless, colloidal SA is an inherently stochastic pro-
cess prone to kinetic arrest due to particle Brownian motion
[2]–[5]. This leads to variability in materials manufacturing
and possibly high defect rates, which can severely compro-
mise the viability of using colloidal SA to reproducibly man-
ufacture advanced materials. This lack of reproducibility can
in turn impede cost-effective and scalable manufacturing of
these materials via SA processes [2], [3], [6], [7]. To this end,
feedback control has shown promise for driving colloidal SA

Jared O’Leary, Mira Khare, and Ali Mesbah are with the Depart-
ment of Chemical and Biomolecular Engineering, University of Califor-
nia, Berkeley, CA 94720, USA. {jared.oleary, mira khare,
mesbah}@berkeley.edu

Financial support from the National Science Foundation under Grant
2112754 is acknowledged.

systems towards desired structures more reproducibly. In [8]–
[10], proportional-integral control was demonstrated on sim-
ple test systems; however, such basic control algorithms may
not be generalizable to colloidal SA systems with complex
dynamics that are more prone to kinetic arrest. On the other
hand, the control strategies proposed in [11]–[15] depend on
learning stochastic dynamic models from data. These models
generally take the form of the chemical Langevin equation,
which may not be computationally tractable for real-time
control of practically-sized systems with highly nonlinear
dynamics [16].

Absent a stochastic model, [17]–[19] used reinforcement
learning (RL) to learn control policies for colloidal SA. RL
is a branch of machine learning concerned with learning to
perform actions so as to achieve a desired objective (i.e.,
maximize a reward function). RL has been used extensively
to manipulate robotics, enhance natural language processing,
and outperform humans in video games, among many other
applications [20]–[22]. Broadly, there exist two classes of
RL methods: those that explicitly evaluate gradients of the
reward function and those that do not [23]. Evolutionary
RL methods fall under the latter class, as these methods
propose and probabilistically accept changes to candidate
control policies [24], [25]. Although less widely applied than
gradient-based RL, evolutionary RL is naturally suited for
“sparse-reward” problems such as colloidal SA, where the
outcome of assembly (i.e., whether or not a desired structure
forms) is not apparent until the later stages of the assembly
process [18], [25], [26].

The evolutionary RL strategy in [18] uses artificial neural
networks with thousands of parameters to represent the
control policy for SA of chemically selective patchy discs.
Despite the high complexity of the neural network represen-
tations, the resulting control policies had fairly simple (e.g.,
quadratic) relationships between the observed system states
and inputs. Thus, a simpler control policy representation
with fewer parameters might have yielded similar control
performance. The simpler representation would require less
training data and be more robust to overfitting. The apparent
inconsistency between the complexity of the control policies’
representation and behavior suggests that RL strategies that
learn both the architecture and parameters of control policies
simultaneously can be advantageous.

To our knowledge, all reported RL strategies for colloidal
SA (e.g., those of [17]–[19]) learn control policies through
objective search, where progress towards a pre-defined goal
is measured and the control policies are iteratively updated
according to this progress. Objective search RL, however,

2023 American Control Conference (ACC)
San Diego, CA, USA. May 31 - June 2, 2023

979-8-3503-2807-3/$31.00 ©2023 AACC 2776



can be prone to learning poor-performing control policies for
“deceptive” systems that must first be guided farther away
from their pre-defined goals before ever achieving them [27].
Complex colloidal SA systems are inherently deceptive, as
successful control policies must be able to initiate disassem-
bly of unavoidable kinetically arrested structures and then
later initiate assembly to smooth out defects and achieve
desired structures. Colloidal SA control policies must thus
be able to temporarily move farther away from their goal
in order to eventually achieve said goal [3], [12]. Although
explored significantly less than objective search, RL methods
based on novelty search can learn superior control laws
for deceptive systems [27]. Novelty-search RL strategies
search for behavioral novelty alone and create a cache of
learned control policies that cause the “most novel” system
behaviors. Then, the cached policy that best accomplishes a
pre-defined goal is selected.

The objective of this work is to investigate the viability of
evolutionary RL for learning the architecture and parameters
of neural network control policies simultaneously while
searching for behavioral novelty in learning such policies. In
particular, we use a class of evolutionary RL methods called
NEAT, or NeuroEvolution of Augmenting Topologies [28],
to learn colloidal SA control policies via objective search
and novelty search. NEAT learns artificial neural network
(ANN) representations of control policies by evolving the
network weights and architecture simultaneously. NEAT is
initialized with ANNs that only contain input and output
nodes. NEAT then evolves progressively larger ANN archi-
tectures. As a result, when paired with novelty search, the
order in which new behaviors are discovered is principled
(from less complex to more complex), rather than random
[27]. In fact, NEAT with objective search and novelty search
has been shown to learn effective control policies for a
number of complex problems [27], [29]. However, to our
knowledge, this study is the first application of novelty
search to a system that is inherently deceptive and displays
highly nonlinear and stochastic dynamics with multiplicative
noise. To this end, the standard NEAT implementation is
adapted to account for system stocasticity. We demonstrate
NEAT with objective search and novelty search to learn
closed-loop control policies that guide the colloidal SA of
a benchmark in-silico system [11]. Open-source codes for
these implementations are released on GitHub [30].

II. PROBLEM STATEMENT

Consider a stochastic nonlinear system

dx = f(x, u)dt+ h(x, u)dw, (1)

where x is the system state, u is the control input, t is
time, w is a Gaussian white noise process, and f(·) and
h(·) are nonlinear functions. As h(·) is a function of state
and input, the noise is considered multiplicative. The input
is constrained as u ∈ U, where U is a compact set.

For the system (1), the goal of this work is to learn a
control policy u := Π(x; θ) that maximizes some reward
function R(x). We represent Π(x; θ) by an ANN that is

parameterized by its architecture and unknown weights and
biases, collectively denoted by θ. We look to employ the
evolutionary RL algorithm NEAT with objective search and
novelty search to learn the “optimal” parameters θ∗ that
maximize the reward function R(x)

θ∗ := arg max
θ

R(x). (2)

As such, θ∗ yields the “optimal” parameterization of the
control policy Π(x; θ∗), which is a function of the system
state and must lie in U.

III. NEUROEVOLUTION OF AUGMENTING TOPOLOGIES

NEAT, like most evolutionary RL algorithms, is initialized
by creating a population of genomes [28]. At this stage,
each genome is a candidate control policy that is represented
by an ANN with randomly-selected weights and biases and
the simplest possible architecture (e.g., no hidden nodes).
During each generation, each genome’s fitness is calculated.
The genomes with the largest fitnesses are then chosen to
be the “parents” of the next generation. These parents are
probabilistically mutated, and the process repeats itself for
a pre-determined number of generations, or until a pre-
determined control performance is reached. Mutations can
add nodes and node-to-node connections, change weight and
bias values, or combine two parent genomes to create a new
genome via “crossover” [28].

NEAT is unique in that it begins evolution with a popu-
lation of small, simple ANNs and complexifies the network
architecture over time. Although complexifying the architec-
ture of an ANN does not always increase the complexity of
the ANN’s behavior, it does increase the upper bound of pos-
sible behavioral complexity by adding more parameters [20]–
[22]. Simpler behaviors must thus be encountered before
more complex behaviors [28]. A key feature distinguishing
NEAT from prior work in complexification (e.g., [31], [32])
is its unique approach to maintaining a healthy diversity of
ANN architectures. For example, NEAT uses the historical
origins of genomes to inform which ones participate in
crossover (i.e., two parent genomes “combining” to create
a new genome). The use of this historical origin information
allows NEAT to produce more meaningful offspring [28].
NEAT also employs speciation wherein only fitnesses among
sufficiently similar architectures are compared during each
generation. Speciation protects new structural innovations by
reducing competition among differing architectures, thereby
giving newer, more complex architectures room to adjust.
Networks are assigned to species based on the extent to
which they share historical origins. Complexification is thus
supported by both historical origin and speciation, allowing
NEAT to establish high-level features early in evolution and
then elaborate on them later. As such, NEAT searches for a
compact, appropriate network architecture by incrementally
complexifying existing architectures.

2777



IV. NEAT WITH OBJECTIVE SEARCH AND NOVELTY
SEARCH

When NEAT is implemented with objective search, the
fitness is calculated by evaluating the reward function R(x).
The goal of objective search is thus to find genomes that
progressively yield larger reward function values. Objective-
search RL, however, is prone to local optima and can perform
poorly when applied to deceptive systems that must first
be guided farther away from their pre-defined goals before
ever achieving them [27], [29]. One reasonable explanation
for this shortcoming is that the reward function does not
necessarily reward the stepping stones in the search space
that can ultimately lead to realizing the control objective
(e.g., temporarily initiated disassembly to eventually achieve
a defect-free crystal in colloidal SA). Novelty search, on
the other hand, uses an alternative fitness criterion based on
behavioral novelty alone. That is, instead of searching to
maximize continuously the reward function, novelty search
incentivizes genomes whose behavior is significantly differ-
ent than what has been discovered before. Novelty-search
RL thus calculates fitness based on a novelty metric that in
no way measures overall progress.

For example, in the case of colloidal SA, initial candidate
genomes may exclusively form weakly crystalline, amor-
phous structures. The novelty metric then rewards simply
creating new structures, even if those structures are not
close to the target, defect-free structure. In contrast, objec-
tive search may explicitly reward creating more crystalline
structures, even if these structures are highly defective. When
searching for novelty, after a few different weakly crystalline
structures are discovered, the only way to be rewarded is to
find a behavior that does not lead to a weakly crystalline
structure. In this way, behavioral complexity arises from the
bottom up. Eventually, to find a new behavior, candidate
genomes would have to create a highly-ordered, defect-free
structure, even if this structure is not explicitly included in
the fitness calculation.

A natural question about novelty search is whether it fol-
lows any principle beyond naively enumerating all possible
behaviors. Although novelty search does attempt to find all
possible behaviors over time, when combined with a com-
plexifying algorithm like NEAT, the order in which they are
discovered is principled and not random. Recall that NEAT
evolves increasingly complex neural networks. This way, the
number of nodes and connections and, thus, the maximal
complexity of neural networks discovered by novelty search
increases over time, ensuring that simple behaviors must be
discovered before more complex behaviors. Regardless of the
particular encoding, this ordering from simple to complex
is generally beneficial due to the minimum description-
length principle in machine learning, i.e., the notion that the
simplest satisfying description is usually the best [33].

A second natural question is whether novelty search is
essentially identical to exhaustive search; enumerating all
possible solutions will ultimately arrive at the best solution,
but at an enormous computational cost. Many environments

provide sufficient constraints on the types of behaviors that
can actually be observed, without the need for further con-
straint from a reward function. For example, it is known that
colloidal SA systems are prone to form kinetically arrested,
highly-crystalline, yet highly defective structures [2], [3].
Although the control policy search-space is effectively infi-
nite, the behavior-space into which points in the search-space
collapse is limited, as systems often tend to become trapped
in a handful of relatively similar configurations. In cases
such as this, the search-space can collapse into a manageable
number of novelty points, significantly differentiating novelty
search from exhaustive search.

The novelty of a newly generated genome is computed
with respect to the behaviors of previously evolved genomes,
not their architectures. The aim is to characterize how
far away the new genome is from its predecessors in the
behavior-space. We measure sparseness and, thus, novelty
with a k-nearest neighbors algorithm [34], where k is a
fixed parameter that is determined empirically. As such, the
sparseness ρ(y) of behavior y is given by

ρ(y) =
1

k

k∑
i=0

dist(y, µi), (3)

where µi is the ith nearest neighbor of y measured using the
distance metric dist. In this work, we use the l2-norm as the
distance metric, and the “behavior” of y is value of the state
variable x at various time points i. Areas with denser clusters
of visited points are less novel and, therefore, rewarded less.

Algorithm 1 NEAT - The choice of fitness function deter-
mines whether the algorithm is based on novelty search (3),
or objective search (5).

G ← Initpop(X, a)
best predictions ← []
species average ← []
for n in [1 . . . Y ] do

S ← speciate(G)
for i in [1 . . . X] do

C ← control(G(X), sys)
F, P ← fitness(C), performance(C)

best predictions.append(G(max(P)))
for j in [1 . . . len(S)] do

species average.append(mean(F(S(j))))
if improvement(species average(j)) is false then

G ← remove(G(S(j)))
mutate(max(P(S(j)))).append(G)
if n = Y then

Return best predictions
P ← []
for n in [1 . . .M ] do

for i in [1 . . . len(best predictions)] do
C ← control(best predictions(i), sys)
P(i,n) ← performance(C)

Return G(max[mean(P(i,:))])

2778



In Algorithm 1, NEAT with objective search and novelty
search is summarized. X is the number of genomes, where
each genome is an ANN with activation functions a. Initpop
creates an initial population of genomes that only contain
input and output nodes and no hidden nodes. Y is the number
of generations. Speciate calculates the compatibility coeffi-
cient (a measure of how similar genomes are), and splits
the population (G) into species. Control applies a control
policy to the system. Fitness accesses the system’s fitness,
that is, (3) for novelty search, or (5) for objective search.
Note that despite how fitness is written in the pseudocode, in
our implementation, fitness is an average of the previous gen-
eration’s fitness values and the current fitness for a genome
that has existed for multiple generations. This averaging
helps account for system stochasticity. Performance uses
(5) to assess the control policy’s performance. Improvement
checks if the average species fitness has improved over some
pre-determined number of generations. Mutate changes the
genomes with the highest fitness values in each species
by either adding a node, adding a node-node connection,
changing a weight or bias value, or crossing over between 2
genomes in the species. M is the number of times the final
set of control policies are tested on the system. This should
be larger than 1 to minimize stochastic impacts on the final
genome rankings.

V. CASE STUDY: COLLOIDAL SELF-ASSEMBLY

A. System Description

We consider a low-dimensional, in-silico representation of
a system of SiO2 colloids from [11]. In this system, 174
identical SiO2 particles with a nominal size of 1.5 µm are
suspended in deionized water in a container made of glass
microscope cover slips. Four separate, tunable 1 MHz AC
electrode tips are attached to the edge of the container and
are used to generate an electric field inside the container.
The colloidal SA can be controlled by adjusting the voltage
of the electric field. A discrete-time representation of this
system is given by

x(i+ 1) = g1(x(i), u(i))∆t+
√
2g2(x(i), u(i))w(i),

g1(x, u) =
d

dx

(
g2(x, u)

)
− d

dx

(
F (x, u)

)g2(x, u)
KbT

,

g2(x, u) = 4.5× 10−3e−(x−2.1−0.75u)2 + 0.5× 10−3,

F (x, u) = 10KbT (x− 2.1− 0.75u)2,

∆t = 1 s, T = 293 K,Kb = 1.38066× 10−23 J/K, (4)

where i is the time step, w ∼ N(0, 1) is an independent
and identically distributed Gaussian white noise term with
zero mean and unit variance, g1(x, u) is the drift function,
g2(x, u) is the diffusion landscape, and F (x, u) is the free
energy landscape. In this case, the state x is defined in terms
of <C6>∈ (0, 6), where <C6> denotes the order parameter
defined as the average number of hexagonally close packed
particles around each particle, while u is the voltage of the
applied external field. Note that <C6>= x ≥ 5.0 identifies a
defect-free crystal [11]. Note that while (4) is a discrete-time

Fig. 1: The artificial neural network architectures for the
control policies from Fig. 2 that were trained with 250 and
500 generations.“NS” denotes novelty search, “OS” objective
search, and “gen” the number of generations used to train a
given control policy. The numbers in each node are historical
markings used by NEAT.

representation, Algorithm 1 can be applied to continuous-
time systems as well.

The control objective is to learn control policies (i.e.,
functions Π(x; θ∗) that map the system state x at time i
to some control input u) that manipulate the SA of the SiO2

particles into defect-free, two-dimensional hexagonal crystals
(i.e., maximize x) as quickly as possible over some pre-
determined batch time, N . We thus seek to use NEAT with
objective search and novelty search to learn control policies
that maximize the reward function

R(x) = −
N∑
i=0

(x− xmax)
2, (5)

where xmax = 6.0, i.e., the maximum physical value of x.

B. Closed-Loop Implementations

Algorithm 1 with objective search and novelty search was
implemented on the colloidal SA system. Each NEAT trial
used 150 genomes and either 125, 250, or 500 generations.
Note that, in this work, the implementation of NEAT is
unique in that it explicitly accounts for run-to-run variability
by applying select genomes to the system multiple times and
then averaging the calculated fitnesses (see the end-to-end

TABLE I: Relative performance of NEAT with objective
search and novelty search in relation to the number of
generations. The performance is evaluated in terms of (5) for
both cases. All performances are scaled to the lowest possible
reward function value. The lowest performing algorithm
would have a value of 1.0.

Number of Generations
125 250 500

Novelty Search 1.04 1.13 1.16
Objective Search 1.0 1.04 1.09

2779



Fig. 2: State and input trajectories (averaged over 1000
replicates) for a few representative control policies. “NS”
denotes novelty search, “OS” objective search, and “gen” the
number of generations used to train a given control policy.
Policies learned with novelty search create target crystals
more quickly and have more complex input profiles than
those learned with objective search.

implementation in [30] for more details). The “behavior”
y used to calculate novelty in (3) is defined as as a ten-
dimensional vector since x(i) is recorded at every ten steps
within the batch time N . In this case, smaller and larger
behavior vectors showed no meaningful difference in the
performance of the learned control policies.

Fig. 1 shows the architectures of the ANN representations
of 4 control policies whose average behavior is depicted
in Fig. 2. At 250 generations, novelty search yields both a
more complex architecture and more complex behavior than
objective search. Interestingly, the architectures of control
policies from both search strategies at 500 generations are
nearly identical despite the policies encoding behaviors of
different complexities. This apparent inconsistency in ar-
chitecture and behavioral complexity is not unexpected, as
ANN architecture merely limits the upper bound of possible
behavioral complexity. Note how simple the architectures of
the learned policies are despite encoding relatively complex
behaviors. Meanwhile, the ANNs used to control colloidal
SA in [18] encoded less complex behavior while containing
thousands of parameters. The relative simplicity of the ANN
architectures in Fig. 1 suggests that future colloidal SA RL
strategies may focus on smaller architectures, which may be
more robust to over-fitting and easier to learn.

Table I shows that control policies learned from novelty

Fig. 3: State and input trajectories for the lowest- and
highest-performing control policies from Fig. 2. “NS” de-
notes novelty search, “OS” objective search, and “gen” the
number of generations used to train a given control policy.

search consistently outperform those learned from objective
search. For both objective search and novelty search, control
policy performance increases with the number of genera-
tions (i.e., the number of updates to the control policy);
however, novelty search outperforms objective search at
each generation number. The ability of NEAT with novelty
search to learn effective control policies with relatively few
generations supports the earlier hypothesis that the behavior-
space can collapse into a manageable number of novelty
points, which would significantly differentiate novelty search
from exhaustive search.

Fig. 2 shows the averaged state and input trajectories for
six representative control policies. Although both objective
search and novelty search consistently yield defect-free crys-
tals well before the end of the batch time, the novelty search
control policies assemble these high-quality crystals more
quickly and, thus, yield larger values of the reward function
(5). At first glance, Fig. 2 shows that novelty search leads
to more complex (i.e., nonlinear) control policies. A closer
look reveals that novelty search control policies account for
deception more effectively than objective search policies.
For example, an input value of u = 4.0 most strongly
initiates assembly. When u is decreased, the driving force
towards assembly is also decreased. The 125-generation,
objective search control policy holds the input at u = 4.0.
Meanwhile, the 500-generation novelty search control policy
brings the control input close to its physical minimum of
u = 0.5 before slowly initiating assembly more strongly.

2780



Regardless of generation number, the novelty search control
policies consistently reach lower levels of u and outperform
the objective search control policies as a result. We note,
however, that objective search control policies more effec-
tively mitigate deception and perform better as the generation
number is increased.

Fig. 3 shows how NEAT with novelty search can yield
control policies that mitigate deception. The figure shows
example single trajectories from the lowest- and highest-
performing control policies from Fig. 2, that is, objective
search with 125 generations and novelty search with 500
generations, respectively. The objective search policy holds
the electric field voltage u constant at its maximum physical
value for the entire trajectory. This constant voltage always
initiates assembly regardless of the state. Meanwhile, the
novelty search policy oscillates u to temporary initiate dis-
assembly (e.g., time steps 50-60) to assemble a defect-free
crystal more quickly than holding u constant would.

VI. CONCLUSIONS AND FUTURE WORK

The paper investigates the viability of neuroevolutionary
RL with objective search and novelty search for mitigating
deception within and, thus, effectively controlling stochastic
nonlinear systems. Objective search and novelty search were
paired with the NEAT algorithm, which learns ANN repre-
sentations of control policies by evolving network weights
and architectures simultaneously. In this way, NEAT dis-
covers simpler behaviors before more complex ones and,
thus, principles novelty search. Our results on a benchmark
colloidal self-assembly system showed that novelty search
NEAT consistently outperforms objective search. However,
NEAT is limited in how complex of control policies it
can learn. Although we argue that control of colloidal SA
may not in fact necessitate large ANN architectures, certain
systems may require ANN control policy architectures that
contain hundreds of nodes and tens of layers. As such, a
focus of future work will be applying novelty search to RL
strategies that involve complex architectures. We will also
explore the use of novelty search with gradient-based RL.

REFERENCES

[1] G. M. Whitesides and B. Grzybowski, “Self-assembly at all scales,”
Science, vol. 295, no. 5564, pp. 2418–2421, 2002.

[2] J. A. Paulson, A. Mesbah, X. Zhu, M. C. Molaro, and R. D. Braatz,
“Control of self-assembly in micro-and nano-scale systems,” Journal
of Process Control, vol. 27, pp. 38–49, 2015.

[3] X. Tang and M. A. Grover, “Control of microparticle assembly,”
Annual Review of Control, Robotics, and Autonomous Systems, vol. 5,
pp. 491–514, 2022.

[4] D. T. Gillespie et al., “Stochastic simulation of chemical kinetics,”
Annual Review of Physical Chemistry, vol. 58, no. 1, pp. 35–55, 2007.

[5] D. T. Gillespie, A. Hellander, and L. R. Petzold, “Perspective: Stochas-
tic algorithms for chemical kinetics,” The Journal of Chemical Physics,
vol. 138, no. 17, p. 05B201 1, 2013.

[6] E. M. Furst, “Directed self-assembly,” Soft Matter, vol. 9, no. 38, pp.
9039–9045, 2013.

[7] J. A. Liddle and G. M. Gallatin, “Nanomanufacturing: a perspective,”
ACS Nano, vol. 10, no. 3, pp. 2995–3014, 2016.

[8] J. J. Juárez and M. A. Bevan, “Feedback controlled colloidal self-
assembly,” Advanced Functional Materials, vol. 22, no. 18, pp. 3833–
3839, 2012.

[9] Y. Gao and R. Lakerveld, “Feedback control for defect-free alignment
of colloidal particles,” Lab on a Chip, vol. 18, no. 14, pp. 2099–2110,
2018.

[10] Y. Gao and R. Lakerveld, “Feedback control for shaping density
distributions of colloidal particles in microfluidic devices,” Lab on
a Chip, vol. 19, no. 13, pp. 2168–2177, 2019.

[11] X. Tang, Y. Xue, and M. A. Grover, “Colloidal self-assembly with
model predictive control,” in Proceedings of the American Control
Conference, 2013, pp. 4228–4233.

[12] X. Tang, B. Rupp, Y. Yang, T. D. Edwards, M. A. Grover, and M. A.
Bevan, “Optimal feedback controlled assembly of perfect crystals,”
ACS Nano, vol. 10, no. 7, pp. 6791–6798, 2016.

[13] X. Tang, J. Zhang, M. A. Bevan, and M. A. Grover, “A comparison
of open-loop and closed-loop strategies in colloidal self-assembly,”
Journal of Process Control, vol. 60, pp. 141–151, 2017.

[14] I. Nodozi, J. O’Leary, A. Mesbah, and A. Halder, “A physics-informed
deep learning approach for minimum effort stochastic control of
colloidal self-assembly,” arXiv preprint arXiv:2208.09182, 2022.

[15] M. A. Bevan, D. M. Ford, M. A. Grover, B. Shapiro, D. Maroudas,
Y. Yang, R. Thyagarajan, X. Tang, and R. M. Sehgal, “Controlling
assembly of colloidal particles into structured objects: Basic strategy
and a case study,” Journal of Process Control, vol. 27, pp. 64–75,
2015.

[16] J. O’Leary, J. A. Paulson, and A. Mesbah, “Stochastic physics-
informed neural ordinary differential equations,” Journal of Computa-
tional Physics, vol. 468, p. 111466, 2022.

[17] J. Zhang, J. Yang, Y. Zhang, and M. A. Bevan, “Controlling colloidal
crystals via morphing energy landscapes and reinforcement learning,”
Science Advances, vol. 6, no. 48, p. eabd6716, 2020.

[18] S. Whitelam and I. Tamblyn, “Learning to grow: Control of material
self-assembly using evolutionary reinforcement learning,” Physical
Review E, vol. 101, no. 5, p. 052604, 2020.

[19] S. Whitelam and I. Tamblyn, “Neuroevolutionary learning of particles
and protocols for self-assembly,” Physical Review Letters, vol. 127,
no. 1, p. 018003, 2021.

[20] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[21] Y. Li, “Deep reinforcement learning: An overview,” arXiv preprint
arXiv:1701.07274, 2017.

[22] P. Dayan and Y. Niv, “Reinforcement learning: the good, the bad and
the ugly,” Current Opinion in Neurobiology, vol. 18, no. 2, pp. 185–
196, 2008.

[23] S. Whitelam, V. Selin, S.-W. Park, and I. Tamblyn, “Correspondence
between neuroevolution and gradient descent,” Nature Communica-
tions, vol. 12, no. 1, pp. 1–10, 2021.

[24] D. E. Moriarty, A. C. Schultz, and J. J. Grefenstette, “Evolutionary al-
gorithms for reinforcement learning,” Journal of Artificial Intelligence
Research, vol. 11, pp. 241–276, 1999.

[25] S. Whiteson, “Evolutionary computation for reinforcement learning,”
Reinforcement Learning, pp. 325–355, 2012.

[26] S. Khadka and K. Tumer, “Evolution-guided policy gradient in re-
inforcement learning,” Advances in Neural Information Processing
Systems, vol. 31, 2018.

[27] J. Lehman and K. O. Stanley, “Abandoning objectives: Evolution
through the search for novelty alone,” Evolutionary Computation,
vol. 19, no. 2, pp. 189–223, 2011.

[28] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evolutionary Computation, vol. 10, no. 2, pp.
99–127, 2002.

[29] J. Lehman, “Evolution through the search for novelty,” PhD Disser-
tation, University of Central Florida, 2012.

[30] J. O’Leary, “NEAT with objective search and novelty search for con-
trolling colloidal self-assembly,” https://github.com/jtoleary/csa neat
ns, online; accessed 1 August 2022.

[31] F. Gruau, D. Whitley, and L. Pyeatt, “A comparison between cellular
encoding and direct encoding for genetic neural networks,” in Proceed-
ings of the 1st Annual Conference on Genetic Programming, 1996, pp.
81–89.

[32] X. Yao, “Evolving artificial neural networks,” Proceedings of the
IEEE, vol. 87, no. 9, pp. 1423–1447, 1999.

[33] P. D. Grünwald, I. J. Myung, and M. A. Pitt, Advances in minimum
description length: Theory and applications. MIT press, 2005.

[34] O. Kramer, “K-nearest neighbors,” in Dimensionality Reduction with
Unsupervised Nearest Neighbors. Springer, 2013, pp. 13–23.

2781


