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Abstract— This paper proposes a learning-based adaptive-
scenario-tree model predictive control (MPC) approach with
probabilistic safety guarantees using Bayesian neural networks
(BNNs) for nonlinear systems. First, a data-driven description
of the model uncertainty (i.e., plant-model mismatch) is learned
using a BNN. Then, the learned description is employed to
generate adaptive scenarios online for scenario-based MPC
(sMPC). To accurately represent the evolution of uncertainties,
we use a moment-matching method to compute the probabilities
of the generated time-varying scenarios. Moreover, probabilistic
safety guarantees are provided by ensuring that the trajectories
of the scenarios contain the real trajectory of the system
and all the generated scenarios satisfy the constraints with
a high probability. By realizing a less conservative estimation
of the model uncertainty, the proposed approach can improve
robust control performance with respect to sMPC with a fixed
scenario tree. Closed-loop simulations on a cold atmospheric
plasma system with prototypical applications in (bio)materials
processing demonstrate that the proposed approach results in
an improved control performance compared to sMPC with a
fixed scenario tree.

I. INTRODUCTION

Model uncertainty is a common challenge in model-
based control of safety-critical systems, where plant-model
mismatch of the model to the system can result in unsafe
operation [1], [2]. This mismatch can arise from a variety
of factors (e.g., hard-to-model and time-varying system dy-
namics and disturbances) and, as a result, has a variety of
assumed representations [3]–[5]. Learning-based strategies
provide an interesting avenue of exploration because they
can strategically incorporate “learned” knowledge about the
system from data. As a result, learning-based MPC has
gained increasing interest for the control of complex safety-
critical systems operating in uncertain and hard-to-model
environments [6]–[8]. While the system and environment
dynamics can be learned from data to improve control per-
formance and constraint satisfaction, the statistical nature of
learning-based approaches introduces important challenges
in guaranteeing robust constraint satisfaction [9].

Gaussian process (GP) regression is a popular choice for
describing plant-model mismatch [7], [10], [11], because
it provides a means to capture the time-varying and state-
dependent nature of structural uncertainty (i.e., plant-model
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mismatch) [4], [12]. However, GPs have a few disadvantages
with regard to providing a nonlinear description of the plant-
model mismatch: i.) cubic complexity to data size while a
variety of scalable GPs have been presented [13], and ii.)
reliance on the assumption that the mismatch can be mapped
with jointly Gaussian distributions. With these disadvantages
in mind, we choose Bayesian neural networks (BNNs) to
model the mismatch. First, BNNs provide a fast evaluation
of the mismatch as well as a fast update of the statistical
properties of the mismatch estimation. In particular, BNNs
assume the parameters in the neural networks are random
variables with given prior distributions and will approximate
the posterior distributions conditioned on data using varia-
tional inference [14]. Furthermore, BNNs are general in that
they can approximate arbitrary posteriors given a prior, which
can enable us to model and predict a variety of mismatch
representations.

In addition to the explicit quantification of the plant-
model mismatch by the BNN, we must also utilize a control
strategy that explicitly accounts for different realizations of
the model uncertainty. A common strategy to account for
uncertainties in MPC is to construct a tree of discrete uncer-
tainty realizations, as done in scenario-based MPC (sMPC)
[15]. By approximating the continuous mismatch description
into discrete scenarios, sMPC solves an optimal control
problem that incorporates an estimation of the deviation
between the model and system. By creating a state- and
input-dependent BNN-based mismatch model, as in [11], we
address a limitation encountered in sMPC which involves
the offline generation of time-invariant scenarios based on
worst-case uncertainty descriptions. As such, the mismatch
description makes the scenario tree adaptive by nature and, as
such, can reduce the conservatism with respect to the worst-
case, fixed scenario tree. Furthermore, we use a moment-
matching technique estimate the probability of each scenario
in order to: i.) explicitly account for the probability of each
uncertainty scenario in the sMPC problem and ii.) establish
probabilistic guarantees for constraint satisfaction. Towards
safe control, different from [11], we enforce constraints of
the system by ensuring that the trajectories of the scenarios
contain the real trajectory of the system and requiring all
such scenarios to satisfy the constraints.

The main contribution of this paper lies in the development
of an adaptive-tree sMPC scheme with safety guarantees
using the state- and input-dependent model uncertainty (i.e.,
plant-model mismatch) that is described by a BNN. The
remainder of the paper is organized as follows: Section II
introduces the problem formulation and related preliminaries.
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Scenario generation and the probabilistic safety guarantee
are discussed in Section III. Section IV presents closed-loop
simulation results to demonstrate the proposed approach.
Concluding remarks are finally provided in Section V.

II. PROBLEM STATEMENT AND RELATED PRELIMINARIES

Consider a constrained, discrete-time nonlinear system
with state- and input-dependent uncertainty of the form

x(k + 1) = f(x(k), u(k)) +Bd(g(x(k), u(k)) + d), (1)

where x is the state, k ∈ N is the time instant, u is the
control input, and d ∈ D ⊆ Rnd is normally-distributed
process noise. f : Rnx × Rnu −→ Rnx represents the known
nominal part of the model (1) while g : Rnx × Rnu −→
D describes unknown structural mismatch that lies in the
subspace spanned by the known matrix Bd ∈ Rnx×nd . Bd
can be used to embed the knowledge of how the noise affects
the states and assumed to be the identity matrix when such
knowledge does not exist. Additionally, the state and input
constraints are described by

x ∈ X ⊆ Rnx , u ∈ U ⊆ Rnu . (2)

We aim to design an adaptive-scenario-tree MPC (asMPC)
which incorporates the state- and input-dependent description
of the mismatch denoted by y , g+d. Using κ : X×N −→ U
to denote the asMPC law, the closed-loop system can be
described by

x(k + 1)

=f(x(k), κ(x(k), k)) +Bd(g(x(k), κ(x(k), k) + d)

,Φκ(x(k), d, k).

(3)

Additionally, we use x(k|x0) to denote the solution x(k) to
(3), given the initial state x0.

Definition 1: Given an initial state x0 ∈ X , the system
(1) is said to be safe under a control law κ if for ∀k ∈ N,

Φκ(x(k), d, k) ∈ X , κ(x(k), k) ∈ U . (4)

Moreover, the system (1) is said to be δ-safe under the
control law κ if ∀k ∈ N,

Pr [Φκ(x(k), d, k) ∈ X , κ(x(k), k) ∈ U ] ≥ 1− δ, (5)

where Pr[·] denotes the probability of an event.
In general, the hard constraints (4) cannot be enforced
without additional assumptions [7], especially when (1) is
unknown. However, δ-safety relaxes the requirements of
safety to safety with a high probability.

Here, we use Bayesian neural networks (BNNs) [14] to
model the mismatch y, which is comprised of g and d
together. BNNs provide an ensemble of models such that
the unknown system behavior is contained within the model
ensemble. Then, safety may be ensured by requiring all
models to satisfy (2).

A. Plant-model Mismatch Quantification using BNNs

In this paper, we use a multi-layer, fully-connected BNN
as depicted in Fig. 1 to model the structural mismatch y
comprised of the noisy vector-valued function g and the
process noise d. The Ns-sample dataset for training the BNN
is defined as

T = {x(j) = (x(j), u(j)), y(j)}Ns
j=1 (6)

where x(j) is the j-th input datum to the BNN and y(j) =
B†d (x(k + 1)− f(x(k), u(k))) = g(x(j), u(j))+d is the j-th
output datum, representing the plant-model mismatch.

A BNN treats the parameters of the models as random
variables and are composed of DenseVariational layers. The
DenseVariational layers approximate the posterior density of
the parameters by variational inference (VI) given a prior
density. Specifically, VI solves

min
θj

KL
(
q(wj ; θj)‖p(wj |T )

)
(7)

⇔ min
θj

(
Eq(wj ;θj) [log q(wj ; θj)]− Eq(wj ;θj) [log p(wj)]

− Eq(wj ;θj) [log p(T |wj)]
)
, (8)

where wj denotes the parameters in the j-th layer of the
BNN, q(wj ; θj) denotes a family of densities with parameters
θj , and p(wj |T ) denotes the posterior. To solve (8) by Monte
Carlo (MC) methods and backpropagation, a reparameteriza-
tion trick is used to parameterize q(wj ; θj), i.e.,

wj = µwj + σwj

⊙
εwj (9)

where
⊙

denotes element-wise multiplication, εwj
∼

N (0, I), and thus θj = (µwj
, σwj

).
The BNN is trained by minimizing

1

NBNN

NBNN∑
i=1

[
log q(w(i); θ)− log p(w(i))− log p(T |w(i))

]
(10)

over θ via stochastic gradient descent where w(i) are the i-th
MC sample for approximating the (10), and NBNN is the MC
sample size determined such that (10) is convergent.

Fig. 1: A BNN composed of multiple DenseVariational layers
with reparameterization trick. BNNs use data to estimate the
parameters µw and σw of the posterior density function.

Using the trained BNN, the density of ŷ = BNN(x) at
given (x(k), u(k)) can be evaluated by drawing samples
from the posteriors of weights and calculating the possible
ŷ’s with each set of sampled weights. Rather than directly es-
timating the density from samples, we calculate the moments,
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such as the mean and standard deviation of each dimension
of ŷ, which is efficient and sufficient for constructing a
confidence interval of x(k + 1) to check (5). To provide
safety guarantees, we need reliable estimates of the mismatch
y inside the operating region X ×U , which is similar to [16]
and formally described in the following assumption:

Assumption 1: For a confidence level δ ∈ (0, 1], there
exists a scaling factor β such that with probability greater
than 1− δ,

∀k ∈ N, |yi(k + 1)− µ̂ŷi(k+1)| ≤ βiσ̂ŷi(k+1) < |Yi|,
i = 1, 2, · · · , nx,

(11)

given (x(k), u(k)) ∈ X × U for any d ∈ D, where µ̂ŷi(k+1)

and σ̂ŷi(k+1) denote the estimated mean and standard devi-
ation of the i-th entry of ŷ(k + 1), respectively, using the
learned BNN model with Monte Carlo methods, and |Yi| is
used to denote the range of valid yi.

By Assumption 1, the learned model is sufficiently accu-
rate such that the values of y are contained in the confidence
intervals of our statistical model. It is noted that a larger
βiσ̂ŷi(k+1) means larger uncertainties of the model and gives
a more conservative estimate of yi(k+1). This overestimates
the probability of constraints violation and reduces the fea-
sible region of control inputs, leading to degraded control
performance. If βiσ̂ŷi(k+1) ≥ |Yi|, the estimate is worse than
a random guess of yi(k + 1), and therefore, not useful for
control. The above assumption can be enforced by a proper
BNN and empirically verified on the testing set after model
training. Moreover, δ is estimated as the relative frequency
of the training data that violates (11) given β and validated
using the testing data.

Furthermore, an input sequence is valid for a system with
x0 if applying the input sequence to the system is safe.

Lemma 1: Given x0, a valid control input sequence u,
a BNN model that fulfills Assumption 1, and a confidence
level δ, there exists a N̄MC such that ∀k ∈ N,

Pr [xj(k|x0) ∈ [x̂j,min(k|x0), x̂j,max(k|x0)]]

≥1− δ, j = 1, · · · , nx
(12)

where x̂j,min(k|x0) = mini x̂
(i)
j (k|x0) and x̂j,max(k|x0) =

maxi x̂
(i)
j (k|x0). In particular, x̂

(i)
j (k|x0) = f(x̂

(l)
j (k −

1|x0),u(k−1))+Bdŷ
(i)(x̂

(l)
j (k−1|x0),u(k−1)) where ŷ(i)

is the prediction of y(x̂
(l)
j (k−1|x0),u(k−1)) using the i-th

sampled model from the BNN model, i = 1, · · · , NMC(k),
l = 1, · · · , NMC(k − 1). Specifically, NMC(k) is used to de-
note the number of models drawn from the BNN model using
MC methods at time instant k, and N̄MC = maxkNMC(k).

Proof: When k = 0, x̂0 = x0. Then, using Assumption
1, there exists a NMC(0) at time instant 0 such that

xj(1|x0) = fj(x0,u(0)) +Bd,[j,:]y(x0,u(0))

∈ [x̂j,min(1|x0), x̂j,max(1|x0)] , j = 1, · · · , nx
hold almost surely, i.e., δ −→ 0, as |yj(x0,u(0)) −
µ̂yj(x0,u(0))| ≤ βj σ̂yj(x0,u(0)) and the support of the weights
in the BNN model are unbounded. Using induction, (12) is
obtained using N̄MC = maxkNMC(k).

Lemma 1 guarantees that, with a high probability, the real
system state trajectory is always contained in the multiple
trajectories simulated by the BNN model.

III. SMPC DESIGN USING BNNS

In this section, we detail the sMPC using the BNN model.
In particular, the scenario generation method is presented,
and the probabilistic safety guarantee is formulated.

A. Scenario-based Model Predictive Control

sMPC assumes that the uncertainty of a system may be
represented by a tree of discrete scenarios. Any particular
branch stemming from a node represents a particular scenario
of an unknown, uncertain influence (e.g., from a disturbance
or model error) [17]. To represent the trajectories gener-
ated by some number S scenarios, we adopt the notation
(xs(i), us(i)), where the addition of the superscript s without
parentheses indicates the particular scenario s ∈ {1, . . . , S}.
The sMPC for an uncertain system at time step k can then
be formulated as follows

min
xs,us

S∑
s=1

ps

[
N−1∑
i=0

V (xs(i), us(i))

]
(13a)

s.t. xs(i+ 1) = f (xs(i), us(i)) + ŷs(i), (13b)
(xs(i), us(i)) ∈ X × U , (13c)
xs(0) = x(k), (13d)

us(i) = ul(i) if xb(s)(i) = xb(l)(i), (13e)

where ps is the probability of a particular scenario,
V (xs(i), us(i)) is the standard MPC cost (which can be
comprised of a stage cost and terminal cost) for the trajectory
of a particular scenario, N is the prediction horizon, ŷs

is generated based on some uncertainty estimation strategy,
and (13e) enforces a non-anticipativity constraint, which
represents the fact that each control input that branches from
the same parent node must be equal (xb(s)(i) is the parent
state of xs(i+1)). The non-anticipativity constraint is crucial
so that the control inputs do not anticipate the future (i.e.,
decisions cannot realize the uncertainty). The solution to this
optimization problem is used to generate the control law,

κ (x(k)) = u?(0). (14)

A potential challenge in the sMPC is the exponential
nature of the scenario tree formulation. To combat this, we
utilize a method described in [17], in which a robust horizon
Nr < N is defined. This robust horizon stops the branching
of the scenario tree up to a certain stage, and the uncertainty
is assumed to be constant thereafter. Consequently, assuming
the number of scenarios ns at each node of a stage is
constant, the total number of scenarios S can be represented
by S = nNr

s .
Here, we propose the use of BNNs to estimate the plant-

model mismatch. Using BNNs to represent the mismatch
not only allows us to have a more expressive uncertainty
estimation with time variance and state dependence, but also
allows us to update and compute the mismatch estimations
online. The details of this update is outlined in the following
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section, and we denote this particular form of adaptable-tree
sMPC as adaptive-scenario-tree MPC (asMPC).

B. Learning-based Scenario Generation

At each time step k, we draw N̄MC samples from normal
distributions and calculate weights w(i) by applying the
transformation (9) of the reparameterization trick to the i-th
sample. While Lemma 1 claims that the trajectories of the
sampled N̄MC models contain the system trajectory, N̄MC can
be too large for online optimization of the sMPC problems.
To reduce the number of scenarios, instead, we estimate ŷ(i)

using w(i), compute

µ̂ŷ(k) =
1

N̄MC

N̄MC∑
i=1

ŷ(i), (15)

σ̂ŷ(k) =

√√√√ 1

N̄MC

N̄MC∑
i=1

‖ŷ(i) − µ̂ŷ(k)‖22, (16)

and use µ̂ŷ(k), µ̂ŷ(k) + aj σ̂ŷ(k), µ̂ŷ(k) − aj σ̂ŷ(k), j =
1, · · · , ns−1

2 where aj are the tuning multipliers, as ns
scenarios at each node of a stage. To maintain the original
statistical properties of the posteriors by the BNN, the prob-
ability of scenarios are calculated using moment-matching
method [18]. Specifically, the first four central moments are
matched by solving the following optimization problem

min
p

m∑
i

(
v1
i

(
M−i +M+

i

)
+ v3

i

(
T−i + T+

i

)
+ v4

i

(
Q−i +Q+

i

) )
+

m∑
i,j=1

v1
i,j

(
Σ−i,j + Σ+

i,j

)
,

s.t. Xp +M− −M+ = M
ns∑
i=1

(Xi −Xp)2pi + Σ− − Σ+ = Σ,

ns∑
i=1

(Xi −Xp)3pi + T− − T+ = T,

ns∑
i=1

(Xi −Xp)4pi +Q− −Q+ = Q,

ns∑
i=1

pi = 1, pi ≥ 0, ∀i ∈ [1, ns],

M+
i ,M

−
i , T

+
i , T

−
i , Q

+
i , Q

−
i ≥ 0, ∀i ∈ [1,m],

Σ+
ij ,Σ

−
ij ≥ 0, ∀i, j ∈ [1,m],

where (Xi−Xp)n denotes the n-th central moment, M , Σ,
T , and Q are the first four central moments estimated from
samples1, and v0

i , v
1
i,j , v

3
i , v

4
i are weighting coefficients. Fur-

thermore, p = (p1, · · · , pns)T, where pi is the probability
of the i-th scenario, and X = (X1, · · · ,Xns) ∈ Rm×ns ,
where Xi = (Xi

1, · · · , Xi
m) denotes the realization of the

uncertainty in the i-th scenario, and m is the dimension of

1The superscripts +,− denote the positive and negative parts of the
variable.

the realization. The number ns are determined such that the
cost value of the optimization problem is acceptable.

Remark 1: It is noted that the computational cost of
the proposed scenario generation approach and moment-
matching method is high when N̄MC is large as well as
with regards to the need to solve a second optimization
problem. However, the computations can be done offline via
a uniform-grid approach. Specifically, we discretize X × U
using uniform grids, evaluate the BNN model at the grid
points for N̄MC times such that Lemma 1 is fulfilled, and
solve the moment-matching optimization problem. The grid
size is determined such that the estimation of µ̂ŷ and σ̂ŷ is
stable. Thus, the scenarios and the probability of scenarios at
(x, u) can be retrieved from the offline computation results
by finding the results at the grid point that is closest to (x, u).

To save computational cost, we only update the uncertainty
estimation every time step and fix the scenarios over the
prediction horizon. In particular, we use the solution u∗(1|k−
1) to (13) at k− 1 and the state x(k) to estimate the overall
source of uncertainty y(k) at k, and ŷ(i|k) = ŷ(k), i =
0, · · · , N − 1 for (13) at k. Generation of the scenarios in
this data-driven framework is two-fold: i.) it allows us to
update the uncertainty estimation at each time step k, which
adapts the scenario tree within the sMPC; ii.) it allows us to
compute the probabilities of each scenario, which allows us
to assign a probabilistic safety certification, as discussed in
the following subsection. Furthermore, we are able to update
our beliefs about the mismatch between the true system and
the model as we gain more experience through interactions
with the system, by systematically updating the priors of the
parameters of the BNN with new data. Then, the BNN may
be updated under the framework in [19] such that it provides
a more informative description of the mismatch.

C. Probabilistic Safety Guarantee

Using the scenario generation approach in III-B, the cer-
tificate of safety can be formalized into our main result.

Theorem 1: Let the hypotheses of Assumption 1 and
Lemma 1 be satisfied. Then, the system under the scenario-
based MPC law is δ-safe if (13) is recursively feasible.

Proof: By Lemma 1, (12) holds using N̄MC samples.
Consequently, at time step k, there exists aj for the scenario
generation using µ̂ŷ(k) and σ̂ŷ(k) estimated from the N̄MC
samples such that the predictions x̂(k+ 1) by the generated
scenarios contain the real x(k + 1) of the system under
Assumption 1. Furthermore, (13) is feasible at every step,
thus (5) holds for all k, which proves the system is δ-safe
by Definition 1.

IV. CASE STUDY

The asMPC approach is demonstrated via closed-loop
simulations using a physics-based model of a RF-excited
atmospheric pressure plasma jet (APPJ) in Argon. The plant
model is described by a differential-algebraic system of
equations (see [20] for details). Similar to [21], subspace
identification was used to obtain the linear time-invariant

3263



(LTI) model

x(k + 1) =

[
0.68 0.05
0.69 0.20

]
x(k) +

[
0.86 −0.17
6.19 −12.10

]
u(k)

as the nominal prediction model f(x, u) in (1). The states
are x = [Ts;Tg] where Ts is the surface temperature and Tg
is the gas temperature, and the inputs are u = [P ; q] where
P is the applied power and q is the flow rate of Argon.
The thermal dose delivered to the target surface measured in
terms of cumulative equivalent minutes (CEM) is defined as

CEM(k + 1) = CEM(k) +K(43−Ts(k))δt,

where K =

{
0.5, if Ts ≥ 35 ◦C
0, otherwise . The control objective

is to achieve a specified thermal dose CEMsp while satisfying
the constraints

25 °C ≤ Ts ≤ 42.5 °C; 20 °C ≤ Tg ≤ 80 °C;

1.5 W ≤ P ≤ 8 W; 1.0 slm ≤ q ≤ 6 slm.

A. BNN Representation of the Plant-Model Mismatch

1) Trajectory Data: Input-output data was gathered by
applying an input sequence to the plant model. This data is
transformed into the dataset T described in II-A for BNN
training. The mismatch in predictions of Ts and Tg are
denoted by y1 and y2, respectively. The dataset consisted
of 22, 366 samples and was randomly split into training and
testing sets by 67%/33%.

2) BNN Structure and Training: A DenseVariational
layer with linear activation connected to a four-layer fully-
connected neural network with the Exponential Linear Unit
activation functions was used to represent the plant-model
mismatch y. The prior p(W 5) = πN (W 5|0, (σ1)2) + (1 −
π)N (W 5|0, (σ2)2) with π = 0.5, σ1 = 1.5, and σ2 = 0.1.
Each of the three hidden layers has 32 units. As in [14], we
first trained an ANN model that shares the same architecture
with the BNN model and then transferred the weights of
the ANN model to the BNN model to improve the training
efficiency of the BNN model. The BNN was trained using
the Adam optimizer in Keras [22]. The learning rate of Adam
was set to 10−3 and decay to 10−6. All other parameters of
Adam were left as default. We trained the model for 10, 000
epochs with batch size 16.

3) BNN Prediction Evaluation: Validation results of the
learned BNN model based on the testing dataset are shown
in Fig. 2 for the surface temperature Ts. 97.82% of y1

in the training dataset are within [µ̂ŷ1 − 3σ̂ŷ1 , µ̂ŷ1 + 3σ̂ŷ1 ]
while 96.90% of y1 in the testing dataset are within [µ̂ŷ1 −
3σ̂ŷ1

, µ̂ŷ1
+ 3σ̂ŷ1

]. Moreover, the estimation of σy is very
conservative at some testing points, as these points are not
well represented in the training data.

B. sMPC Formulation

As stated above, the control objective is to deliver a
specified thermal dose CEMsp to a target surface. Thus, the
objective function of the sMPC formulation is defined as

V (CEM(k)) = ||CEMsp − CEM(N)||2, (17)

Fig. 2: Mean predictions of the BNN model of the mismatch
along with a confidence interval of three estimated standard
deviations σ̂ŷ1 around the estimated mean µ̂ŷ1 are repre-
sented as a red, shaded area and a dashed red line. The true
values of the mismatch y1 are denoted by the solid blue line.

where CEM(k) denotes the current CEM dose achieved at
time step k and CEM(N) is the predicted CEM by the end
of the prediction horizon N . For comparison, we examine the
performance of several variants of sMPC. In the first case, we
examine the common approach of precomputing the worst-
case uncertainty bounds, which is denoted as “worst-case”
sMPC. The worst-case sMPC assumes a fixed scenario tree
with scenarios generated based on the maximum error of
estimation between the plant and the nominal model. Addi-
tionally, the scenarios were weighted uniformly, as we made
no assumption of the prevalence of over-/under-estimation.
In the second case, we examine the performance of sMPC
using µ̂ŷ as the only scenario. This mismatch quantification
is a function of the states and inputs, but does not consider
the variance of uncertainty predictions. In the final case, we
consider the proposed asMPC approach, wherein both the
mean and variance of the BNN predictions of the plant-model
mismatch are considered. In the asMPC case, we account for
the probabilities of each scenario.

C. Closed-loop Simulations

At each time instant, we sampled N̄MC = 100 models
to estimate the mean µy and standard deviation σy of the
mismatch y. Subsequently, at each node of the scenario tree,
we used µ̂ŷ, µ̂ŷ + 3σ̂ŷ, and µ̂ŷ − 3σ̂ŷ as three discrete
scenarios of the plant-model mismatch. Furthermore, we set
|y1| ≤ 3 and |y2| ≤ 20 based on maxj |y(j)

i |, i = 1, 2 in
the dataset T . When the predictions of the scenarios are out
of the bounds of y due to the limited generalization of the
BNN model, we use the bounds instead of the predictions
and uniform distribution as the probability of scenarios to
avoid too conservative uncertainty estimation.

In our comparison of the aforementioned sMPC con-
trollers, we used a prediction horizon N = 5 and a robust
horizon Nr = 2. The sMPC problem (13) was solved in less
than 0.1390 s (at all time instants) in our closed-loop runs
while the sampling time was 0.5 s. As shown in Fig. 3, em-
ploying the proposed asMPC approach (green line) achieves
better control performance than using sMPC with µ̂ŷ as the
only scenario (blue line labeled by µ̂ŷ) and the worst-case
sMPC (black line). Furthermore, we performed 100 closed-
loop simulations using asMPC under different measurement
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noise realizations drawn from normal distribution N (0, 0.2).
The states and control inputs that satisfy the constraints under
the asMPC control law from three closed-loop simulations
are shown in Fig. 4. Moreover, the closed-loop simulations
revealed that all runs satisfied constraints by increasing a to
20.

Fig. 3: Closed-loop simulation results of various scenario-
based MPC strategies for CEM setpoint tracking.

(a) Ts profile. (b) Tg profile.

(c) Control input P . (d) Control input q.

Fig. 4: State and input profiles for three closed-loop sim-
ulations of the proposed adaptive-scenario-tree MPC under
different noise realizations.

V. CONCLUSIONS

In this paper, a learning- and scenario-based MPC ap-
proach was proposed to safely control nonlinear systems with
state- and input-dependent uncertainties. In particular, a BNN
was employed to model the unknown and/or time-varying
system dynamics using trajectory data of the system, and
adaptive scenario trees were constructed online based on the
BNN model. Additionally, a moment-matching optimization
method was used to compute the probabilities of the gener-
ated time-varying scenarios. Moreover, probabilistic safety
was guaranteed by ensuring that the generated scenarios
contain the real system and the constraints are satisfied by
all the scenarios in the prediction horizon. Closed-loop sim-
ulations on a physics-based plasma jet model demonstrated
that the proposed approach can improve control performance
compared to scenario-based MPC with a fixed scenario tree.
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